Derivation of generic optimal reference temperature profiles for steady-state exothermic jacketed tubular reactors

Abstract Despite the existence of advanced controllers for jacketed tubular reactors, generic optimal steady-state reference temperature profiles are rather scarce. In this paper, optimal (infinite dimensional) temperature profiles are derived by exploiting a combination of analytical and numerical optimal control techniques for two cost criteria which both involve a trade-off between a conversion and an energy cost. Hereby, the following results are obtained: (i) a more complex model which also incorporates heat transfer, yields more valuable references than a simple model which only takes the reaction into account, (ii) the analytical approach allows to extract generic features in the reference profiles, enhancing the robustness against model mismatch, and (iii) the performance loss due to practical implementation hardware, i.e., the availability of only a finite number of isothermal jacket elements, is quantified.

[1]  Julio R. Banga,et al.  A hybrid method for the optimal control of chemical processes , 1998 .

[2]  Asghar Husain,et al.  Computation of optimal control policy with singular subarc , 1981 .

[3]  William F. Stevens,et al.  Studies of singular solutions in dynamic optimization: II. Optimal singular design of a plug‐flow tubular reactor , 1971 .

[4]  O. Bilous,et al.  Optimum temperature gradients in tubular reactors—I: General theory and methods , 1956 .

[5]  P. Daoutidis,et al.  Feedback Control of Hyperbolic PDE Systems , 1996 .

[6]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[7]  Wolfgang Marquardt,et al.  Adaptive switching structure detection for the solution of dynamic optimization problems , 2006 .

[8]  Jan F. M. Van Impe,et al.  Optimal control of (bio-)chemical reactors: generic properties of time and space dependent optimization , 2002, Math. Comput. Simul..

[9]  Denis Dochain,et al.  Monitoring and control of process and power systems: Towards new paradigms: Status report prepared by the IFAC Coordinating committee on Process and Power Systems , 2006, Annu. Rev. Control..

[10]  Denis Dochain,et al.  Monitoring and control of process and poxer systems : towards new paradigms , 2005 .

[11]  Costas J. Spanos,et al.  Advanced process control , 1989 .

[12]  R. Sargent,et al.  Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints , 1994 .

[13]  P. Daoutidis,et al.  Robust control of hyperbolic PDE systems , 1998 .

[14]  Jayant M. Modak,et al.  AN IMPROVED COMPUTATIONAL ALGORITHM FOR SINGULAR CONTROL PROBLEMS IN CHEMICAL REACTION ENGINEERING , 1989 .

[15]  Wolfgang Marquardt,et al.  Detection and exploitation of the control switching structure in the solution of dynamic optimization problems , 2006 .

[16]  Domitilla Del Vecchio,et al.  Boundary control for an industrial under-actuated tubular chemical reactor , 2005 .

[17]  Ilse Smets,et al.  Optimal adaptive control of (bio)chemical reactors: past, present and future , 2004 .

[18]  Andrzej Burghardt,et al.  Optimal temperature profiles in a tubular reactor for a system of consecutive – competing reactions: A + B → RR + B → S , 1974 .

[19]  Rein Luus,et al.  Evaluation of gradients for piecewise constant optimal control , 1991 .

[20]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[21]  Stanislaw Sieniutycz,et al.  Optimal temperature profiles for parallel-consecutive reactions with deactivating catalyst , 2001 .

[22]  Panagiotis D. Christofides,et al.  Predictive control of transport-reaction processes , 2005, Comput. Chem. Eng..

[23]  John E. Rijnsdorp,et al.  Advanced process control: W. Harmon Ray , 1982, Autom..

[24]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[25]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[26]  Dominique Bonvin,et al.  Dynamic optimization of batch processes: II. Role of measurements in handling uncertainty , 2003, Comput. Chem. Eng..

[27]  Denis Dochain,et al.  Optimal temperature control of a steady‐state exothermic plug‐flow reactor , 2000 .

[28]  Walter J. Weber,et al.  Particle Surface Roughness Effects On The Interfacial Mass Transfer Dynamics Of Microporous Adsorbents , 1988 .

[29]  Stanislaw Sieniutycz,et al.  Optimization of the reactor–regenerator system with catalytic parallel–consecutive reactions , 1999 .

[30]  S. Palanki,et al.  Dynamic Optimization of Batch Processes : II . Handling Uncertainty Using Measurements , 2001 .

[31]  Julio R. Banga,et al.  Stochastic optimization for optimal and model-predictive control , 1998 .

[32]  V. Vassiliadis,et al.  Restricted second order information for the solution of optimal control problems using control vector parameterization , 2002 .

[33]  John Matthew Santosuosso,et al.  Dynamic optimization of batch processing , 2003 .

[34]  Anil Kumar,et al.  Optimal temperature profiles for nylon 6 polymerization in plug‐flow reactors , 1983 .

[35]  Panagiotis D. Christofides,et al.  Nonlinear and Robust Control of Pde Systems , 2001 .

[36]  Dominique Bonvin,et al.  Dynamic optimization of batch processes: I. Characterization of the nominal solution , 2003, Comput. Chem. Eng..

[37]  Filip Logist,et al.  Multiple-objective optimisation of a jacketed tubular reactor , 2007, 2007 European Control Conference (ECC).

[38]  R. Luus,et al.  Optimal Control of Inequality State Constrained Systems , 1997 .

[39]  Michel Perrier,et al.  Milestone Report for Area 7 Industrial Applications , 2002 .

[40]  O. Bilous,et al.  Optimum temperature gradients in tubular reactors—II: Numerical study☆ , 1956 .