Excitation of plasmonic gap waveguides by nanoantennas.

We model and optimize the excitation of a plasmonic gap waveguide by a dipole antenna. The coupling efficiency strongly depends on antenna and waveguide properties where impedance matching plays a critical role. The optimization of antenna lengths and gap widths shows that concepts of circuit networks can likewise be applied to optical frequencies. Using classical optimization schemes known from electrical engineering we manage to increase the coupling efficiency by a factor of 129 compared with the situation without antennas.

[1]  Masanobu Haraguchi,et al.  Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding , 2005 .

[2]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[3]  Dmitri K. Gramotnev,et al.  Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides , 2006 .

[4]  Andrea Alù,et al.  Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. , 2007, Physical review letters.

[5]  Jean-Claude Weeber,et al.  Plasmon polaritons of metallic nanowires for controlling submicron propagation of light , 1999 .

[6]  G. Veronis,et al.  Guided subwavelength plasmonic mode supported by a slot in a thin metal film. , 2005, Optics letters.

[7]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[8]  Sailing He,et al.  Novel surface plasmon waveguide for high integration. , 2005, Optics express.

[9]  Nader Engheta,et al.  Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes , 2006, physics/0603052.

[10]  T. Ebbesen,et al.  Channel plasmon-polariton guiding by subwavelength metal grooves. , 2005, Physical review letters.

[11]  Shanhui Fan,et al.  Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides , 2005 .

[12]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[13]  L Martin-Moreno,et al.  Channel plasmon-polaritons: modal shape, dispersion, and losses. , 2006, Optics letters.

[14]  Stefan A. Maier,et al.  Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing , 2004 .

[15]  Andrea Alù,et al.  Tuning the scattering response of optical nanoantennas with nanocircuit loads , 2008 .

[16]  Federico Capasso,et al.  Bowtie plasmonic quantum cascade laser antenna. , 2007, Optics express.

[17]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[18]  Eloïse Devaux,et al.  Compact gradual bends for channel plasmon polaritons. , 2006, Optics express.

[19]  Peter B Catrysse,et al.  Geometries and materials for subwavelength surface plasmon modes. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  Federico Capasso,et al.  Optical properties of surface plasmon resonances of coupled metallic nanorods. , 2007, Optics express.

[21]  Gordon S. Kino,et al.  Optical antennas: Resonators for local field enhancement , 2003 .

[22]  Motoichi Ohtsu,et al.  Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion , 2005 .

[23]  Alexandra Boltasseva,et al.  Near-field excitation of nanoantenna resonance. , 2007, Optics express.

[24]  Bernhard Lamprecht,et al.  Non?diffraction-limited light transport by gold nanowires , 2002 .

[25]  A. Hohenau,et al.  Silver nanowires as surface plasmon resonators. , 2005, Physical review letters.

[26]  Alexei A. Maradudin,et al.  Excitation of surface polaritons by end-fire coupling. , 1983, Optics letters.

[27]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[28]  Andrea Alù,et al.  Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. , 2004, Physical review letters.

[29]  D. Pile,et al.  Two-dimensionally localized modes of a nanoscale gap plasmon waveguide , 2005 .

[30]  Mark L. Brongersma,et al.  Leaky and bound modes of surface plasmon waveguides , 2005 .