Computing the alliance polynomial of a graph

The alliance polynomial of a graph $\Gamma$ with order $n$ and maximum degree $\delta_1$ is the polynomial $A(\Gamma; x) = \sum_{k=-\delta_1}^{\delta_1} A_{k}(\Gamma) \, x^{n+k}$, where $A_{k}(\Gamma)$ is the number of exact defensive $k$-alliances in $\Gamma$. We provide an algorithm for computing the alliance polynomial. Furthermore, we obtain some properties of $A(\Gamma; x)$ and its coefficients. In particular, we prove that the path, cycle, complete and star graphs are characterized by their alliance polynomials. We also show that the alliance polynomial characterizes many graphs that are not distinguished by other usual polynomials of graphs.

[1]  Jose Maria Sigarreta,et al.  On the complement graph and defensive k-alliances , 2009, Discret. Appl. Math..

[2]  C. Lee Giles,et al.  Efficient identification of Web communities , 2000, KDD '00.

[3]  Jason I. Brown,et al.  Roots of Independence Polynomials of Well Covered Graphs , 2000 .

[4]  I. Gutman,et al.  On the theory of the matching polynomial , 1981, J. Graph Theory.

[5]  Xueliang Li,et al.  Clique polynomials and independent set polynomials of graphs , 1994, Discret. Math..

[6]  Peter Tittmann,et al.  A new two-variable generalization of the chromatic polynomial , 2003, Discret. Math. Theor. Comput. Sci..

[7]  E. J. Farrell,et al.  An introduction to matching polynomials , 1979, J. Comb. Theory, Ser. B.

[8]  Juan A. Rodríguez-Velázquez,et al.  Global defensive k-alliances in graphs , 2009, Discret. Appl. Math..

[9]  Juan A. Rodríguez-Velázquez,et al.  Spectral study of alliances in graphs , 2007, Discuss. Math. Graph Theory.

[10]  Guerrero,et al.  Upper k-Alliances in Graphs , 2011 .

[11]  Marc Noy,et al.  On Graphs Determined by Their Tutte Polynomials , 2004, Graphs Comb..

[12]  Michael A. Henning,et al.  Global Defensive Alliances in Graphs , 2003, Electron. J. Comb..

[13]  Saieed Akbari,et al.  Characterization of graphs using domination polynomials , 2010, Eur. J. Comb..

[14]  Teresa W. Haynes,et al.  A quantitative analysis of secondary RNA structure using domination based parameters on trees , 2006, BMC Bioinformatics.

[15]  Saeid Alikhani,et al.  Introduction to Domination Polynomial of a Graph , 2014, Ars Comb..

[16]  Walter Carballosa Exact Defensive Alliances in Graphs , 2013 .

[17]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.

[18]  Johann A. Makowsky,et al.  The enumeration of vertex induced subgraphs with respect to the number of components , 2008, Eur. J. Comb..

[19]  Julie Zhang,et al.  An Introduction to Chromatic Polynomials , 2018 .

[20]  Juan A. Rodríguez-Velázquez,et al.  On defensive alliances and line graphs , 2006, Appl. Math. Lett..

[21]  Jose Maria Sigarreta,et al.  Alliance polynomial of regular graphs , 2017, Discret. Appl. Math..

[22]  Marc Noy,et al.  Graphs determined by polynomial invariants , 2003, Theor. Comput. Sci..