Scale Invariant Optical Flow

Scale variation commonly arises in images/videos, which cannot be naturally dealt with by optical flow. Invariant feature matching, on the contrary, provides sparse matching and could fail for regions without conspicuous structures. We aim to establish dense correspondence between frames containing objects in different scales and contribute a new framework taking pixel-wise scales into consideration in optical flow estimation. We propose an effective numerical scheme, which iteratively optimizes discrete scale variables and continuous flow ones. This scheme notably expands the practicality of optical flow in natural scenes containing various types of object motion.

[1]  T. Vaudrey,et al.  Differences between stereo and motion behaviour on synthetic and real-world stereo sequences , 2008, 2008 23rd International Conference Image and Vision Computing New Zealand.

[2]  Matthew A. Brown,et al.  Invariant Features from Interest Point Groups , 2002, BMVC.

[3]  Joachim Weickert,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Optic Flow in Harmony Optic Flow in Harmony Optic Flow in Harmony , 2022 .

[4]  Daniel Cremers,et al.  Large displacement optical flow computation withoutwarping , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[5]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[6]  Antti Oulasvirta,et al.  Computer Vision – ECCV 2006 , 2006, Lecture Notes in Computer Science.

[7]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[8]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[9]  Daniel Cremers,et al.  Anisotropic Huber-L1 Optical Flow , 2009, BMVC.

[10]  Michael J. Black,et al.  Secrets of optical flow estimation and their principles , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Michael J. Black,et al.  Skin and bones: multi-layer, locally affine, optical flow and regularization with transparency , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[13]  Thomas Deselaers,et al.  ClassCut for Unsupervised Class Segmentation , 2010, ECCV.

[14]  Steven M. Seitz,et al.  Filter flow , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[15]  Kurt Keutzer,et al.  Dense Point Trajectories by GPU-Accelerated Large Displacement Optical Flow , 2010, ECCV.

[16]  Adam Finkelstein,et al.  The Generalized PatchMatch Correspondence Algorithm , 2010, ECCV.

[17]  Henning Zimmer,et al.  Modeling temporal coherence for optical flow , 2011, 2011 International Conference on Computer Vision.

[18]  Li Xu,et al.  A Segmentation Based Variational Model for Accurate Optical Flow Estimation , 2008, ECCV.

[19]  Jitendra Malik,et al.  Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[21]  Horst Bischof,et al.  Motion estimation with non-local total variation regularization , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Daniel Cremers,et al.  Structure- and motion-adaptive regularization for high accuracy optic flow , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[23]  Michael J. Black,et al.  Layered image motion with explicit occlusions, temporal consistency, and depth ordering , 2010, NIPS.

[24]  Joachim Weickert,et al.  Towards ultimate motion estimation: combining highest accuracy with real-time performance , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[25]  Jiří Matas,et al.  Computer Vision - ECCV 2004 , 2004, Lecture Notes in Computer Science.

[26]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[27]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Different Scenes , 2008, ECCV.

[28]  Andrew J. Davison,et al.  Active Matching , 2008, ECCV.

[29]  Edward H. Adelson,et al.  Human-assisted motion annotation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Serge J. Belongie,et al.  A Feature-based Approach for Dense Segmentation and Estimation of Large Disparity Motion , 2006, International Journal of Computer Vision.

[31]  Yasuyuki Matsushita,et al.  Motion detail preserving optical flow estimation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.