A survey on artificial intelligence trends in spacecraft guidance dynamics and control

The rapid developments of Artificial Intelligence in the last decade are influencing Aerospace Engineering to a great extent and research in this context is proliferating. We share our observations on the recent developments in the area of Spacecraft Guidance Dynamics and Control, giving selected examples on success stories that have been motivated by mission designs. Our focus is on evolutionary optimisation, tree searches and machine learning, including deep learning and reinforcement learning as the key technologies and drivers for current and future research in the field. From a high-level perspective, we survey various scenarios for which these approaches have been successfully applied or are under strong scientific investigation. Whenever possible, we highlight the relations and synergies that can be obtained by combining different techniques and projects towards future domains for which newly emerging artificial intelligence techniques are expected to become game changers.

[1]  Nicolas H. Franceschini,et al.  Small Brains, Smart Machines: From Fly Vision to Robot Vision and Back Again , 2014, Proceedings of the IEEE.

[2]  Bruce A. Conway,et al.  Particle Swarm Optimization Applied to Space Trajectories , 2010 .

[3]  Hao Peng,et al.  Artificial Neural Network–Based Machine Learning Approach to Improve Orbit Prediction Accuracy , 2018 .

[4]  Carlos A. Coello Coello,et al.  Multiobjective Optimization for Space Mission Design Problems , 2015 .

[5]  Dario Izzo,et al.  Artificial Intelligence for Space Applications , 2007 .

[6]  Jacob A Englander,et al.  An Automated Solution of the Low-Thrust Interplanetary Trajectory Problem. , 2017, Journal of guidance, control, and dynamics : a publication of the American Institute of Aeronautics and Astronautics devoted to the technology of dynamics and control.

[7]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[8]  Roberto Furfaro,et al.  Robust Spacecraft Hovering Near Small Bodies in Environments with Unknown Dynamics using Reinforcement Learning , 2012 .

[9]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[10]  Damon Landau,et al.  GTOC9: Methods and Results from the Jet Propulsion Laboratory Team , 2017 .

[11]  Dario Izzo,et al.  Fast approximators for optimal low-thrust hops between main belt asteroids , 2016, 2016 IEEE Symposium Series on Computational Intelligence (SSCI).

[12]  Gianmarco Radice,et al.  Ant Colony Algorithms for Two-Impulse Interplanetary Trajectory Optimization , 2006 .

[13]  Ruhul A. Sarker,et al.  GA with a new multi-parent crossover for solving IEEE-CEC2011 competition problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[14]  Slawomir J. Nasuto,et al.  Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories , 2007, J. Glob. Optim..

[15]  Etienne Pellegrini,et al.  A multiple-shooting differential dynamic programming algorithm. Part 2: Applications , 2020 .

[16]  Bin Yang,et al.  Review of optimization methodologies in global and China trajectory optimization competitions , 2018, Progress in Aerospace Sciences.

[17]  Dario Izzo,et al.  Low-thrust trajectory design as a constrained global optimization problem , 2011 .

[18]  Dario Izzo,et al.  Real-time optimal control via Deep Neural Networks: study on landing problems , 2016, ArXiv.

[19]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[20]  Giuseppe Nicosia,et al.  Design of Robust Space Trajectories , 2011, SGAI Conf..

[21]  Dario Izzo,et al.  Learning the optimal state-feedback using deep networks , 2016, 2016 IEEE Symposium Series on Computational Intelligence (SSCI).

[22]  Fujun Peng,et al.  Trajectory classification in circular restricted three-body problem using support vector machine , 2015 .

[23]  Dario Izzo,et al.  Interplanetary Trajectory Planning with Monte Carlo Tree Search , 2015, IJCAI.

[24]  Martin Schlueter,et al.  MIDACO software performance on interplanetary trajectory benchmarks , 2014 .

[25]  Jianjun Luo,et al.  An improved differential evolution algorithm and its applications to orbit design , 2017 .

[26]  Haibin Shang,et al.  Parameter estimation for optimal asteroid transfer trajectories using supervised machine learning , 2018, Aerospace Science and Technology.

[27]  Ponnuthurai N. Suganthan,et al.  An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[28]  Dario Izzo,et al.  Search for a grand tour of the jupiter galilean moons , 2013, GECCO '13.

[29]  Simon M. Lucas,et al.  A Survey of Monte Carlo Tree Search Methods , 2012, IEEE Transactions on Computational Intelligence and AI in Games.

[30]  Dario Izzo,et al.  Constraint Handling and Multi-Objective Methods for the Evolution of Interplanetary Trajectories , 2015 .

[31]  Massimiliano Vasile,et al.  An Inflationary Differential Evolution Algorithm for Space Trajectory Optimization , 2011, IEEE Transactions on Evolutionary Computation.

[32]  Stephen Kemble,et al.  MIDACO on MINLP space applications , 2013 .

[33]  Yuanqing Xia,et al.  Unified Multiobjective Optimization Scheme for Aeroassisted Vehicle Trajectory Planning , 2018, Journal of Guidance, Control, and Dynamics.

[34]  Dario Izzo,et al.  GTOC5: Results from the European Space Agency and University of Florence , 2014 .

[35]  Massimiliano Vasile,et al.  Designing optimal low-thrust gravity-assist trajectories using space pruning and a multi-objective approach , 2009 .

[36]  Barbara Hammer,et al.  A Note on the Universal Approximation Capability of Support Vector Machines , 2003, Neural Processing Letters.

[37]  Hao Peng,et al.  Exploring Capability of Support Vector Machine for Improving Satellite Orbit Prediction Accuracy , 2018 .

[38]  Wheeler Ruml,et al.  A Comparison of Greedy Search Algorithms , 2010, SOCS.

[39]  Fernando Alonso Zotes,et al.  Particle swarm optimisation of interplanetary trajectories from Earth to Jupiter and Saturn , 2012, Eng. Appl. Artif. Intell..

[40]  Dario Izzo,et al.  Evolving Solutions to TSP Variants for Active Space Debris Removal , 2015, GECCO.

[41]  Marco Sciandrone,et al.  Machine learning for global optimization , 2010, Computational Optimization and Applications.

[42]  Dario Izzo,et al.  On the stability analysis of optimal state feedbacks as represented by deep neural models , 2018, ArXiv.

[43]  Ryu Funase,et al.  1 Differential Dynamic Programming Approach for Robust-optimal Low-thrust Trajectory Design Considering Uncertainy , 2015 .

[44]  Bernardetta Addis,et al.  A global optimization method for the design of space trajectories , 2011, Comput. Optim. Appl..

[45]  Ossama Abdelkhalik,et al.  Hidden Genes Genetic Algorithms for Systems Architecture Optimization , 2016, GECCO.

[46]  Massimiliano Vasile,et al.  MGA trajectory planning with an ACO-inspired algorithm , 2010, ArXiv.

[47]  Massimiliano Vasile,et al.  A direct memetic approach to the solution of Multi-Objective Optimal Control Problems , 2016, 2016 IEEE Symposium Series on Computational Intelligence (SSCI).

[48]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[49]  Michael Cupples,et al.  Interplanetary Mission Design Using Differential Evolution , 2007 .

[50]  Bernd Dachwald,et al.  LOW-THRUST TRAJECTORY OPTIMIZATION AND INTERPLANETARY MISSION ANALYSIS USING EVOLUTIONARY NEUROCONTROL , 2004 .

[51]  Ko Basu,et al.  Time-optimal reorientation using neural network and particle swarm formulation , 2018 .

[52]  Christos Ampatzis,et al.  Machine Learning Techniques for Approximation of Objective Functions in Trajectory Optimisation , 2009 .

[53]  Dario Izzo,et al.  Reinforcement Learning for Spacecraft Maneuvering Near Small Bodies , 2016 .

[54]  Roberto Furfaro,et al.  Deep Reinforcement Learning for Six Degree-of-Freedom Planetary Powered Descent and Landing , 2018, ArXiv.

[55]  Francesco Topputo,et al.  AAS 18-363 DEEP LEARNING FOR AUTONOMOUS LUNAR LANDING , 2018 .

[56]  Edmondo Minisci,et al.  Analysis of Some Global Optimization Algorithms for Space Trajectory Design , 2010 .

[57]  Anastassios E. Petropoulos,et al.  Increamenting multi-objective evolutionary algorithms: Performance studies and comparisons , 2001 .

[58]  Dario Izzo,et al.  Designing Complex Interplanetary Trajectories for the Global Trajectory Optimization Competitions , 2015, 1511.00821.

[59]  Dario Izzo,et al.  Spacecraft Trajectory Optimization: Global Optimization and Space Pruning for Spacecraft Trajectory Design , 2010 .

[60]  Francesco Topputo,et al.  A Recurrent Deep Architecture for Quasi-Optimal Feedback Guidance in Planetary Landing , 2018 .

[61]  Dario Izzo,et al.  The Kessler Run: On the Design of the GTOC9 Challenge , 2018 .

[62]  Dario Izzo,et al.  Machine learning and evolutionary techniques in interplanetary trajectory design , 2018, Springer Optimization and Its Applications.

[63]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[64]  Dario Izzo,et al.  Multi-rendezvous Spacecraft Trajectory Optimization with Beam P-ACO , 2017, EvoCOP.

[65]  David J. Lary,et al.  Artificial Intelligence in Aerospace , 2010 .

[66]  Dario Izzo,et al.  Machine Learning of Optimal Low-Thrust Transfers Between Near-Earth Objects , 2017, HAIS.

[67]  Dario Izzo,et al.  Self-Adaptive Genotype-Phenotype Maps: Neural Networks as a Meta-Representation , 2014, PPSN.

[68]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[69]  Bruce A. Conway,et al.  Automated Mission Planning via Evolutionary Algorithms , 2012 .

[70]  Kalyanmoy Deb,et al.  Interplanetary Trajectory Optimization with Swing-Bys Using Evolutionary Multi-objective Optimization , 2007, ISICA.

[71]  Xiao Xiang Zhu,et al.  Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources , 2017, IEEE Geoscience and Remote Sensing Magazine.

[72]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[73]  Lorenzo Casalino,et al.  Enhanced Continuous Tabu Search in a Hybrid Evolutionary Algorithm for the Optimization of Interplanetary Trajectories , 2009 .

[74]  D. Izzo,et al.  Global Optimisation Heuristics and Test Problems for Preliminary Spacecraft Trajectory Design , 2009 .

[75]  John Mark Bishop,et al.  Advanced global optimisation for mission analysis and design , 2004 .

[76]  Dario Izzo,et al.  The asynchronous island model and NSGA-II: study of a new migration operator and its performance , 2013, GECCO '13.

[77]  Andreas Ohndorf,et al.  Global Optimization of Continuous-Thrust Trajectories Using Evolutionary Neurocontrol , 2019, Springer Optimization and Its Applications.

[78]  Dario Izzo,et al.  On the Stability Analysis of Deep Neural Network Representations of an Optimal State Feedback , 2018, IEEE Transactions on Aerospace and Electronic Systems.