Recent Advances in Heat Transfer Enhancements: A Review Report

Different heat transfer enhancers are reviewed. They are (a) fins and microfins, (b) porous media, (c) large particles suspensions, (d) nanofluids, (e) phase-change devices, (f) flexible seals, (g) flexible complex seals, (h) vortex generators, (i) protrusions, and (j) ultra high thermal conductivity composite materials. Most of heat transfer augmentation methods presented in the literature that assists fins and microfins in enhancing heat transfer are reviewed. Among these are using joint-fins, fin roots, fin networks, biconvections, permeable fins, porous fins, capsulated liquid metal fins, and helical microfins. It is found that not much agreement exists between works of the different authors regarding single phase heat transfer augmented with microfins. However, too many works having sufficient agreements have been done in the case of two phase heat transfer augmented with microfins. With respect to nanofluids, there are still many conflicts among the published works about both heat transfer enhancement levels and the corresponding mechanisms of augmentations. The reasons beyond these conflicts are reviewed. In addition, this paper describes flow and heat transfer in porous media as a well-modeled passive enhancement method. It is found that there are very few works which dealt with heat transfer enhancements using systems supported with flexible/flexible-complex seals. Eventually, many recent works related to passive augmentations of heat transfer using vortex generators, protrusions, and ultra high thermal conductivity composite material are reviewed. Finally, theoretical enhancement factors along with many heat transfer correlations are presented in this paper for each enhancer.

[1]  T. P. Cotter Principles and prospects for micro heat pipes , 1984 .

[2]  Wenhua Yu,et al.  The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model , 2003 .

[3]  S. Haaland Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow , 1983 .

[4]  Ephraim M Sparrow,et al.  Convective heat transfer response to height differences in an array of block-like electronic components , 1984 .

[5]  James E. O'Brien,et al.  Local Heat Transfer and Pressure Drop for Finned-Tube Heat Exchangers Using Oval Tubes and Vortex Generators , 2001, Heat Transfer: Volume 1 — Fundamentals of Heat Transfer.

[6]  G. Lauriat,et al.  Analytical solution of non-Darcian forced convection in an annular duct partially filled with a porous medium , 1995 .

[7]  D. Dipprey,et al.  An experimental investigation of heat and momentum transfer in smooth and rough tubes at various Prandtl numbers , 1961 .

[8]  J. Koo,et al.  A new thermal conductivity model for nanofluids , 2004 .

[9]  Ravikanth S. Vajjha,et al.  Experimental determination of thermal conductivity of three nanofluids and development of new correlations , 2009 .

[10]  Chi-Chuan Wang,et al.  Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method , 2006 .

[11]  R. Webb Single-phase heat transfer, friction, and fouling characteristics of three-dimensional cone roughness in tube flow , 2009 .

[12]  G. Tanda Natural convective heat transfer in vertical channels with low-thermal-conductivity ribs , 2008 .

[13]  W. Roetzel,et al.  Conceptions for heat transfer correlation of nanofluids , 2000 .

[14]  Y. Xuan,et al.  Convective heat transfer and flow characteristics of Cu-water nanofluid , 2002, Science China Technological Sciences.

[15]  J. C. Khanpara,et al.  Augmentation of R-113 in-tube evaporation with micro-fin tubes , 1986 .

[16]  Yulong Ding,et al.  Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions , 2004 .

[17]  Moh’d A. Al-Nimr,et al.  Unsteady non-Darcian forced convection analysis in an annulus partially filled with a porous , 1997 .

[18]  Anthony M. Jacobi,et al.  Impact of leading edge delta-wing vortex generators on the thermal performance of a flat tube, louvered-fin compact heat exchanger , 2005 .

[19]  M. Jensen,et al.  Technical Note Experimental investigation of turbulent heat transfer and fluid flow in internally finned tubes , 1999 .

[20]  S. Phillpot,et al.  Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) , 2002 .

[21]  J. Ting,et al.  Ultra high thermal conductivity polymer composites , 2002 .

[22]  P. H. Hayes,et al.  HIGH-PERFORMANCE HEAT TRANSFER SURFACES , 1970 .

[23]  Moh’d A. Al-Nimr,et al.  Transient non-Darcian forced convection flow in a pipe partially filled with a porous material , 1998 .

[24]  Jiin-Yuh Jang,et al.  Forced convection in a parallel plate channel partially filled with a high porosity medium , 1992 .

[25]  Kambiz Vafai,et al.  Cooling Enhancements in Thin Films Supported by Flexible Complex Seals in the Presence of Ultrafine Suspensions , 2003 .

[26]  V. Jain Heat transfer and pressure drop in internally finned tubes. , 1977 .

[27]  Arunn Narasimhan,et al.  Porous Media Enhanced Forced Convection Fundamentals and Applications , 2000 .

[28]  S. F. Al-Fahed,et al.  Heat transfer and pressure drop in a tube with internal microfins under turbulent water flow conditions , 1993 .

[29]  Majed M. Alhazmy,et al.  Experimental study of turbulent single-phase flow and heat transfer inside a micro-finned tube , 2008 .

[30]  Q. Xue,et al.  A model of thermal conductivity of nanofluids with interfacial shells , 2005 .

[31]  K. Leong,et al.  Enhanced thermal conductivity of TiO2—water based nanofluids , 2005 .

[32]  Yat Huang Yau,et al.  A review on the application of horizontal heat pipe heat exchangers in air conditioning systems in the tropics , 2010 .

[33]  Kambiz Vafai,et al.  Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media , 1994 .

[34]  J. Copetti,et al.  Experiments with micro-fin tube in single phase , 2004 .

[35]  G. H. Junkhan,et al.  Mechanical Augmentation of Convective Heat Transfer in Air , 1975 .

[36]  Leonard L. Vasiliev,et al.  Heat pipes in modern heat exchangers , 2005 .

[37]  Nandy Putra,et al.  Pool boiling of nano-fluids on horizontal narrow tubes , 2003 .

[38]  M. M. Chen,et al.  Microconvective Thermal Conductivity in Disperse Two-Phase Mixtures as Observed in a Low Velocity Couette Flow Experiment , 1981 .

[39]  Mohammad O. Hamdan,et al.  Enhancing forced convection by inserting porous substrate in the core of a parallel‐plate channel , 2000 .

[40]  V. Bianco,et al.  An investigation of the thermal performance of cylindrical heat pipes using nanofluids , 2010 .

[41]  V. Gnielinski New equations for heat and mass transfer in turbulent pipe and channel flow , 1976 .

[42]  R. Prasher,et al.  Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids , 2006 .

[43]  D. Kessler,et al.  An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids , 2009 .

[44]  M. Pate,et al.  Heat Exchangers for the Air-Conditioning and Refrigeration Industry: State-of-the-Art Design and Technology , 1991 .

[45]  G. Biswas,et al.  A numerical study of heat transfer in fin-tube heat exchangers using winglet-type vortex generators in common-flow down configuration , 2003 .

[46]  Louay M. Chamra,et al.  Linear correlation of heat transfer and friction in helically-finned tubes using five simple groups of parameters , 2008 .

[47]  Analysis of Thermally Expandable Flexible Fluidic Thin-Film Channels , 2007 .

[48]  A. Bejan,et al.  Cylindrical trees of pin fins , 2000 .

[49]  A. F. Shatalov,et al.  Dependence of the heat transfer coefficient on the vibration amplitude and frequency of a vertical thin heater , 1995 .

[50]  K. Khanafer,et al.  Isothermal surface production and regulation for high heat flux applications utilizing porous inserts , 2001 .

[51]  Conjugate heat transfer analysis with subcooled boiling for an arc-heater wind tunnel nozzle , 1996 .

[52]  Emily J. Pfautsch Forced convection in nanofluids over a flat plate , 2008 .

[53]  H. Brinkman,et al.  On the permeability of media consisting of closely packed porous particles , 1949 .

[54]  Moh’d A. Al-Nimr,et al.  Solar Collectors with Tubes Partially Filled with Porous Substrates , 1999 .

[55]  H. Brinkman A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles , 1949 .

[56]  M. Al-Nimr,et al.  Enhancing heat transfer in parallel-plate channels by using porous inserts , 2001 .

[57]  J. Bear,et al.  Introduction to Modeling of Transport Phenomena in Porous Media , 1990 .

[58]  M. Al-Nimr,et al.  Unsteady non-darcian fluid flow in parallel-plates channels partially filled with porous materials , 1998 .

[59]  H. Masuda,et al.  ALTERATION OF THERMAL CONDUCTIVITY AND VISCOSITY OF LIQUID BY DISPERSING ULTRA-FINE PARTICLES. DISPERSION OF AL2O3, SIO2 AND TIO2 ULTRA-FINE PARTICLES , 1993 .

[60]  F. Varas,et al.  Heat transfer enhancement in micro-channels caused by vortex promoters , 2010 .

[61]  Wei Li,et al.  Fouling in enhanced tubes using cooling tower water: Part II: combined particulate and precipitation fouling , 2000 .

[62]  A. Mozumder Heat transfer performance of internally finned tube , 2001 .

[63]  A. R. Khaled Analysis of heat transfer through Bi-convection fins , 2009 .

[64]  Moh’d A. Al-Nimr,et al.  Using Porous Fins for Heat Transfer Enhancement , 2001 .

[65]  Analysis of Heat Transfer Inside Flexible Thin-Film Channels With Nonuniform Height Distributions , 2007 .

[66]  H. M. Li,et al.  INVESTIGATION ON TUBE-SIDE FLOW VISUALIZATION, FRICTION FACTORS AND HEAT TRANSFER CHARACTERISTICS OF HELICAL-RIDGING TUBES , 1982 .

[67]  Pedro J. Mago,et al.  Experimental determination of heat transfer and friction in helically-finned tubes , 2008 .

[68]  Moh’d A. Al-Nimr,et al.  Improving the performance of double-pipe heat exchangers by using porous substrates , 1999 .

[69]  P. F. Vassallo,et al.  Pool boiling heat transfer experiments in silica–water nano-fluids , 2004 .

[70]  Xianfan Xu,et al.  Thermal Conductivity of Nanoparticle -Fluid Mixture , 1999 .

[71]  A. R. Khaled Heat transfer enhancement in hairy fin systems , 2007 .

[72]  T. P. Cotter,et al.  Theory of Heat Pipes , 1965 .

[73]  M. Al-Nimr,et al.  On forced convection in channels partially filled with porous substrates , 2002 .

[74]  Avtar Singh Ahuja,et al.  Augmentation of heat transport in laminar flow of polystyrene suspensions. II. Analysis of the data , 1975 .

[75]  A. R. Khaled,et al.  The role of expandable thermal systems in improving performance of thermal devices , 2007 .

[76]  L. L. Vasiliev,et al.  Micro and miniature heat pipes – Electronic component coolers , 2008 .

[77]  W. Roetzel,et al.  TEMPERATURE DEPENDENCE OF THERMAL CONDUCTIVITY ENHANCEMENT FOR NANOFLUIDS , 2003 .

[78]  Adrian Bejan,et al.  Constructal trees of circular fins for conductive and convective heat transfer , 1999 .

[79]  Yulong Ding,et al.  Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) , 2006 .

[80]  Arthur E. Bergles,et al.  Swirl flow heat transfer and pressure drop with twisted-tape inserts , 2003 .

[81]  Chien-Nan Lin,et al.  Conjugate Heat Transfer and Fluid Flow Analysis in Fin-Tube Heat Exchangers with Wave-Type Vortex Generators , 2002 .

[82]  A. R. Khaled Maximizing Heat Transfer Through Joint Fin Systems , 2006 .

[83]  J. Buongiorno Convective Transport in Nanofluids , 2006 .

[84]  M. H. Kamran Siddiqui,et al.  Heat transfer augmentation in a heat exchanger tube using a baffle , 2007 .

[85]  G. P. Peterson,et al.  A review and comparative study of the investigations on micro heat pipes , 2007 .

[86]  T. Rabas,et al.  Disruption shape effects on the performance of enhanced tubes with the separation and reattachment mechanism , 1992 .

[87]  C. Chon,et al.  Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement , 2005 .

[88]  H. Wang,et al.  Prediction of effective friction factors for single-phase flow in horizontal microfin tubes , 2004 .

[89]  K. Vafai,et al.  Flow and heat transfer inside thin films supported by soft seals in the presence of internal and external pressure pulsations , 2002 .

[90]  W. Roetzel,et al.  Pool boiling characteristics of nano-fluids , 2003 .

[91]  Stephen U. S. Choi,et al.  APPLICATION OF METALLIC NANOPARTICLE SUSPENSIONS IN ADVANCED COOLING SYSTEMS * , 2022 .

[92]  Kambiz Vafai,et al.  Analysis of flexible microchannel heat sink systems , 2005 .

[93]  Chi-Chuan Wang,et al.  Single-phase heat transfer and pressure drop characteristics of microfin tubes , 1995 .

[94]  S. D. Kim,et al.  Heat-transfer characteristics of a latent heat storage system using MgCl2 · 6H2O , 1992 .

[95]  K. Khanafer,et al.  BUOYANCY-DRIVEN HEAT TRANSFER ENHANCEMENT IN A TWO-DIMENSIONAL ENCLOSURE UTILIZING NANOFLUIDS , 2003 .

[96]  A. R. Khaled Heat Transfer Analysis Through Solar and Rooted Fins , 2008 .

[97]  A. R. Khaled Investigation of Heat Transfer Enhancement Through Permeable Fins , 2010 .

[98]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[99]  T. C. Carnavos Cooling Air in Turbulent Flow with Internally Finned Tubes , 1979 .

[100]  Kambiz Vafai,et al.  Convective flow and heat transfer in a channel containing multiple heated obstacles , 1998 .

[101]  Yulong Ding,et al.  Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids , 2005 .

[102]  J. Eastman,et al.  Enhanced thermal conductivity through the development of nanofluids , 1996 .

[103]  Ralph L. Webb,et al.  Heat transfer and friction characteristics of internal helical-rib roughness , 2000 .

[104]  Karen A. Thole,et al.  Heat transfer augmentation along the tube wall of a louvered fin heat exchanger using practical delta winglets , 2008 .

[105]  Amir Faghri,et al.  Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube , 1996 .

[106]  W. Rohsenow,et al.  Handbook of Heat Transfer , 1998 .

[107]  L. Chamra,et al.  Single-phase heat transfer in micro-fin tubes , 1997 .

[108]  Clement Kleinstreuer,et al.  Laminar nanofluid flow in microheat-sinks , 2005 .

[109]  B. Shome,et al.  Experimental Investigation of Laminar Flow and Heat Transfer in Internally Finned Tubes , 1997 .

[110]  T. J. Rabas,et al.  Turbulent Flow in Integrally Enhanced Tubes, Part 1: Comprehensive Review and Database Development , 1996 .

[111]  Y. Xuan,et al.  Heat transfer enhancement of nanofluids , 2000 .

[112]  B. A. Jubran,et al.  Convective heat transfer and pressure drop characteristics of various array configurations to simulate the cooling of electronic modules , 1996 .

[113]  A. Spencer Analysis of the Data , 1974, Geological Society, London, Special Publications.

[114]  K. S. Lee,et al.  Single-phase heat transfer and flow characteristics of micro-fin tubes , 2005 .

[115]  J. C. Cheng,et al.  Heat transfer enhancement of backward-facing step flow in a channel by using baffle installation on the channel wall , 2005 .

[116]  G. Lauriat,et al.  Non-Darcian forced convection analysis in an annulus partially filled with a porous material , 1995 .

[117]  A. Mujumdar,et al.  Heat transfer characteristics of nanofluids: a review , 2007 .

[118]  Mervyn Smyth,et al.  A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins , 2009 .

[119]  T. Kiatsiriroat,et al.  Air side performance at low Reynolds number of cross-flow heat exchanger using crimped spiral fins , 2005 .

[120]  Gheorghe Dumitrascu,et al.  Mathematical models for the study of solidification within a longitudinally finned heat pipe latent heat thermal storage system , 1999 .

[121]  B. Sundén,et al.  A numerical investigation of heat transfer enhancement in offset strip fin heat exchangers in self-sustained oscillatory flows , 2001 .

[122]  T. C. Carnavos Heat Transfer Performance of Internally Finned Tubes in Turbulent Flow , 1980 .

[123]  O. Zeitoun,et al.  Natural convection in a horizontal cylindrical annulus using porous fins , 2008 .

[124]  Ephraim M Sparrow,et al.  Heat transfer and pressure drop characteristics of arrays of rectangular modules encountered in electronic equipment , 1982 .

[125]  R. Velraj,et al.  Studies on pumping power in terms of pressure drop and heat transfer characteristics of compact plate-fin heat exchangers—A review , 2010 .

[126]  Zhixin Li,et al.  Experimental study of single-phase pressure drop and heat transfer in a micro-fin tube , 2007 .

[127]  Kambiz Vafai,et al.  The role of porous media in modeling flow and heat transfer in biological tissues , 2003 .

[128]  Yulong Ding,et al.  Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids) , 2004 .

[129]  C. L. Tien,et al.  Boundary and inertia effects on flow and heat transfer in porous media , 1981 .

[130]  K. Vafai,et al.  Analysis of non-Darcian effects on temperature differentials in porous media , 2001 .

[131]  Chinaruk Thianpong,et al.  Heat transfer enhancement in a tube using delta-winglet twisted tape inserts , 2010 .

[132]  D. P. Sekulic,et al.  Extended surface heat transfer , 1972 .

[133]  B. Wang,et al.  A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles , 2003 .

[134]  J. H. Kim,et al.  Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer , 2003 .

[135]  Avtar Singh Ahuja,et al.  Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results , 1975 .

[136]  Vedat S. Arpaci,et al.  Conduction Heat Transfer , 2002 .

[137]  G. Lauriat,et al.  Forced Convective Heat Transfer in Porous Media , 2000 .

[138]  Kambiz Vafai,et al.  Transient analysis of incompressible flow through a packed bed , 1998 .

[139]  Huaqing Xie,et al.  Thermal conductivity enhancement of suspensions containing nanosized alumina particles , 2002 .

[140]  Muhammad M. Rahman,et al.  Experimental measurements of heat transfer in an internally finned tube , 1998 .

[141]  Abdulmajeed A. Mohamad,et al.  Heat transfer enhancements in heat exchangers fitted with porous media Part I: constant wall temperature , 2003 .

[142]  Yutaka Kagawa,et al.  Enhancing the thermal conductivity of polyacrylonitrile- and pitch-based carbon fibers by grafting carbon nanotubes on them , 2010 .

[143]  S. F. Al-Fahed,et al.  Pressure drop and heat transfer comparison for both microfin tube and twisted-tape inserts in laminar flow , 1998 .

[144]  Min Zeng,et al.  Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns , 2009 .

[145]  F. Durst,et al.  Performance comparison of pin fin in-duct flow arrays with various pin cross-sections , 2006 .

[146]  Patrick Bot,et al.  Experimental study of the flow in a compact heat exchanger channel with embossed-type vortex generators , 2003 .

[147]  M. Al-Nimr,et al.  Using Capsulated Liquid Metal Fins for Heat Transfer Enhancement , 2004 .

[148]  A. Mokmeli,et al.  Prediction of nanofluid convective heat transfer using the dispersion model , 2010 .

[149]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[150]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[151]  J. Ting,et al.  Vapor grown carbon fiber reinforced aluminum composites with very high thermal conductivity , 1995 .

[152]  Gad Hetsroni,et al.  Heat transfer to a liquid—solid mixture in a flume , 1994 .

[153]  D. Nikitopoulos,et al.  Mass/heat transfer in a ribbed passage with cylindrical vortex generators : The effect of generator-rib spacing , 2000 .

[154]  Young I Cho,et al.  HYDRODYNAMIC AND HEAT TRANSFER STUDY OF DISPERSED FLUIDS WITH SUBMICRON METALLIC OXIDE PARTICLES , 1998 .

[155]  Kambiz Vafai,et al.  Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions , 2002 .

[156]  Michael B. Pate,et al.  Heat transfer and pressure drop during evaporation and condensation of R22 in horizontal micro-fin tubes☆ , 1989 .

[157]  Stephen U. S. Choi,et al.  Effects of Various Parameters on Nanofluid Thermal Conductivity , 2007 .

[158]  S. Kakaç,et al.  Heat Exchangers: Selection, Rating, and Thermal Design , 1997 .

[159]  Kambiz Vafai,et al.  Convective cooling of a heated obstacle in a channel , 1998 .

[160]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .

[161]  Moh’d A. Al-Nimr,et al.  A modified tubeless solar collector partially filled with porous substrate , 1998 .

[162]  A. E. Bergles,et al.  The Implications and Challenges of Enhanced Heat Transfer for the Chemical Process Industries , 2001 .

[163]  J. Eastman,et al.  Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles , 1999 .

[164]  Louay M. Chamra,et al.  Correlating heat transfer and friction in helically-finned tubes using artificial neural networks , 2007 .

[165]  Allan D. Kraus,et al.  Sixty-Five Years of Extended Surface Technology (1922–1987) , 1988 .

[166]  A. W. Date,et al.  Heat transfer and pressure drop in a spirally grooved tube with twisted tape insert , 2009 .

[167]  Y. Xuan,et al.  Investigation on Convective Heat Transfer and Flow Features of Nanofluids , 2003 .