Performance analysis of switched linear systems under arbitrary switching via generalized coordinate transformations

For a continuous-time switched linear system, the spectral abscissa is defined as the worst-case divergence rate under arbitrary switching, which is critical for characterizing the asymptotic performance of the switched system. In this study, based on the generalized coordinate transformations approach, we develop a computational scheme that iteratively produces sequences of minimums of matrix set μ1 measures, where the limits of the sequences are upper bound estimates of the spectral abscissa. A simulation example is presented to illustrate the effectiveness of the proposed scheme.

[1]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[2]  Franco Blanchini The gain scheduling and the robust state feedback stabilization problems , 2000, IEEE Trans. Autom. Control..

[3]  Zhendong Sun A Note on Marginal Stability of Switched Systems , 2008, IEEE Trans. Autom. Control..

[4]  L. Gurvits Stability of discrete linear inclusion , 1995 .

[5]  Yacine Chitour,et al.  Common Polynomial Lyapunov Functions for Linear Switched Systems , 2006, SIAM J. Control. Optim..

[6]  Guoping Liu,et al.  Stability of linear discrete switched systems with delays based on average dwell time method , 2010, Science China Information Sciences.

[7]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[8]  Ziad Zahreddine,et al.  MATRIX MEASURE AND APPLICATION TO STABILITY OF MATRICES AND INTERVAL DYNAMICAL SYSTEMS , 2003 .

[9]  A. Jadbabaie,et al.  Approximation of the joint spectral radius using sum of squares , 2007, 0712.2887.

[10]  Zhendong Sun,et al.  On convergence rates of simultaneously triangularizable switched linear systems , 2005, IEEE Transactions on Automatic Control.

[11]  Zhendong Sun,et al.  A Note on Marginal Stability of Switched Systems , 2007, IEEE Transactions on Automatic Control.

[12]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[13]  Jianghai Hu,et al.  Dynamic buffer management using optimal control of hybrid systems , 2008, Autom..

[14]  Jun Zhao,et al.  Hybrid control for global stabilization of the cart-pendulum system , 2001, Autom..

[15]  Y. Pyatnitskiy,et al.  Criteria of asymptotic stability of differential and difference inclusions encountered in control theory , 1989 .

[16]  Franco Blanchini,et al.  A new class of universal Lyapunov functions for the control of uncertain linear systems , 1999, IEEE Trans. Autom. Control..

[17]  Zhendong Sun,et al.  Approximation of the spectral abscissa for switched linear systems via generalized coordinate transformations , 2014, Proceeding of the 11th World Congress on Intelligent Control and Automation.

[18]  Robert Shorten,et al.  Stability Criteria for Switched and Hybrid Systems , 2007, SIAM Rev..

[19]  Moussa Balde,et al.  Stability of planar switched systems: the nondiagonalizable case , 2006, math/0610401.

[20]  LiXian Zhang,et al.  Benefits of redundant channels in observer-based H∞ control for discrete-time switched linear systems , 2016 .

[21]  Vincent D. Blondel,et al.  Computationally Efficient Approximations of the Joint Spectral Radius , 2005, SIAM J. Matrix Anal. Appl..

[22]  Raphaël M. Jungers,et al.  Analysing the Stability of Linear Systems via Exponential Chebyshev Polynomials , 2016, IEEE Transactions on Automatic Control.

[23]  Yacine Chitour,et al.  On the marginal instability of linear switched systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[24]  R. Decarlo,et al.  Asymptotic Stability of m-Switched Systems using Lyapunov-Like Functions , 1991, 1991 American Control Conference.

[25]  A. Morse,et al.  Stability of switched systems with average dwell-time , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[26]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[27]  L. Elsner The generalized spectral-radius theorem: An analytic-geometric proof , 1995 .

[28]  S. Pettersson,et al.  Stability and robustness for hybrid systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[29]  R. Hartwig,et al.  The Resultant and the Matrix Equation $AX = XB$ , 1972 .

[30]  Ugo V. Boscain,et al.  Stability of Planar Switched Systems: The Linear Single Input Case , 2002, SIAM J. Control. Optim..

[31]  A. Morse,et al.  Stability of switched systems: a Lie-algebraic condition ( , 1999 .

[32]  Mau-Hsiang Shih,et al.  Asymptotic Stability and Generalized Gelfand Spectral Radius Formula , 1997 .

[33]  Franco Blanchini,et al.  Nonquadratic Lyapunov functions for robust control , 1995, Autom..

[34]  Zhendong Sun,et al.  Approximation of extreme measure for switched linear systems , 2011, 2011 9th IEEE International Conference on Control and Automation (ICCA).

[35]  J. L. Mancilla-Aguilar,et al.  A converse Lyapunov theorem for nonlinear switched systems , 2000 .

[36]  S.M. Williams,et al.  Adaptive frequency domain control of PWM switched power line conditioner , 1990, Fifth Annual Proceedings on Applied Power Electronics Conference and Exposition.

[37]  S. Ge,et al.  Stability Theory of Switched Dynamical Systems , 2011 .

[38]  Zhendong Sun Recent advances on analysis and design of switched linear systems , 2017 .

[39]  Hai Lin,et al.  Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results , 2009, IEEE Transactions on Automatic Control.

[40]  Zhendong Sun,et al.  Approximating the Spectral Abscissa for Switched Linear Systems via Coordinate Transformations , 2016, J. Syst. Sci. Complex..