Speckle optical tweezers: micromanipulation with random light fields.

Current optical manipulation techniques rely on carefully engineered setups and samples. Although similar conditions are routinely met in research laboratories, it is still a challenge to manipulate microparticles when the environment is not well controlled and known a priori, since optical imperfections and scattering limit the applicability of this technique to real-life situations, such as in biomedical or microfluidic applications. Nonetheless, scattering of coherent light by disordered structures gives rise to speckles, random diffraction patterns with well-defined statistical properties. Here, we experimentally demonstrate how speckle fields can become a versatile tool to efficiently perform fundamental optical manipulation tasks such as trapping, guiding and sorting. We anticipate that the simplicity of these "speckle optical tweezers" will greatly broaden the perspectives of optical manipulation for real-life applications.

[1]  K. Dholakia,et al.  Microfluidic sorting in an optical lattice , 2003, Nature.

[2]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[3]  Martin Siler,et al.  Optical sorting and detection of submicrometer objects in a motional standing wave , 2006 .

[4]  S. Wereley,et al.  soft matter , 2019, Science.

[5]  G. Volpe,et al.  Simulation of a Brownian particle in an optical trap , 2013 .

[6]  David G Grier,et al.  Observation of flux reversal in a symmetric optical thermal ratchet. , 2005, Physical review letters.

[7]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[8]  Silvio Bianchi,et al.  A multi-mode fiber probe for holographic micromanipulation and microscopy. , 2012, Lab on a chip.

[9]  Giovanni Volpe,et al.  Optical trapping and manipulation of nanostructures. , 2013, Nature nanotechnology.

[10]  F. Marchesoni,et al.  Artificial Brownian motors: Controlling transport on the nanoscale , 2008, 0807.1283.

[11]  Kishan Dholakia,et al.  Shaping the future of biophotonics: imaging and manipulation , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[12]  D. Grier,et al.  Optical tweezer arrays and optical substrates created with diffractive optics , 1998 .

[13]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[14]  Mark Dykman,et al.  Thermally activated transitions in a bistable three-dimensional optical trap , 1999, Nature.

[15]  Sylvain Gigan,et al.  Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation , 2013, Scientific Reports.

[16]  Esteban Vera,et al.  A clustered speckle approach to optical trapping , 2010 .

[17]  K. Dholakia,et al.  In situ wavefront correction and its application to micromanipulation , 2010 .

[18]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[19]  J. Squier,et al.  Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. , 2006, Lab on a chip.

[20]  大房 健 基礎講座 電気泳動(Electrophoresis) , 2005 .

[21]  Fabio Marchesoni,et al.  Transport properties in disordered ratchet potentials , 1997 .

[22]  Wieslaw Krolikowski,et al.  Selective Trapping of Multiple Particles by Volume Speckle Field , 2022 .

[23]  Pavel Zemánek,et al.  Light at work: The use of optical forces for particle manipulation, sorting, and analysis , 2008, Electrophoresis.

[24]  A. Ashkin,et al.  History of optical trapping and manipulation of small-neutral particle, atoms, and molecules , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[25]  P. Reimann Brownian motors: noisy transport far from equilibrium , 2000, cond-mat/0010237.

[26]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[27]  Kaplan,et al.  Optical thermal ratchet. , 1995, Physical review letters.

[28]  J. Goodman Some fundamental properties of speckle , 1976 .

[29]  D. Leykam,et al.  Laser speckle field as a multiple particle trap , 2010 .

[30]  Andreas Heuer,et al.  Particle dynamics in two-dimensional random-energy landscapes: experiments and simulations. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  S. Egelhaaf,et al.  Colloids in light fields: Particle dynamics in random and periodic energy landscapes , 2013, 1308.5632.

[32]  Giovanni Volpe,et al.  Computational toolbox for optical tweezers in geometrical optics , 2014, 1402.5439.

[33]  Aristide Dogariu,et al.  Superdiffusion in optically controlled active media , 2012, Nature Photonics.

[34]  Karen Volke-Sepúlveda,et al.  Modulated optical sieve for sorting of polydisperse microparticles , 2006 .

[35]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[36]  Ke Xiao,et al.  Multidimensional optical fractionation of colloidal particles with holographic verification. , 2009, Physical review letters.

[37]  S. Egelhaaf,et al.  Colloids in one dimensional random energy landscapes , 2012 .

[38]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[39]  Kishan Dholakia,et al.  Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes. , 2007, Optics letters.

[40]  Ernst-Ludwig Florin,et al.  High precision and continuous optical transport using a standing wave optical line trap. , 2011, Optics express.

[41]  C. Salomon,et al.  Trapping and cooling cesium atoms in a speckle field , 1999 .

[42]  Feng,et al.  Memory effects in propagation of optical waves through disordered media. , 1988, Physical review letters.

[43]  P. Zemánek,et al.  Speed enhancement of multi-particle chain in a traveling standing wave , 2012 .

[44]  G. Lerosey,et al.  Controlling waves in space and time for imaging and focusing in complex media , 2012, Nature Photonics.

[45]  Frank Scheffold,et al.  Giant enhanced diffusion of gold nanoparticles in optical vortex fields. , 2009, Nano letters.

[46]  Feng,et al.  Correlations and fluctuations of coherent wave transmission through disordered media. , 1988, Physical review letters.

[47]  H J Tiziani,et al.  Optical particle trapping with computer-generated holograms written on a liquid-crystal display. , 1999, Optics letters.

[48]  Arthur Ashkin,et al.  Optical Levitation by Radiation Pressure , 1971 .

[49]  A. Ajdari,et al.  Directional motion of brownian particles induced by a periodic asymmetric potential , 1994, Nature.