Wet chemical synthesis of La9.83−xSrxSi6O26+δ (0≤x≤0.50) powders, characterization of intermediate and final products

[1]  W. Stręk,et al.  La3+-doped SrBi2Ta2O9 thin films for FRAM synthesized by sol-gel method , 2014 .

[2]  Minqiang Wang,et al.  Combustion synthesis and luminescence properties of Ca4Y6(SiO4)6O:Eu3+ red phosphor for white LEDs , 2013 .

[3]  Wei Liu,et al.  Sol–gel synthesis and ionic conductivity of oxyapatite-type La9.33+xSi6O26+1.5x , 2013 .

[4]  S. Castanho,et al.  Facile preparation of apatite-type lanthanum silicate by a new water-based sol–gel process , 2013 .

[5]  Ming Zhang,et al.  Synthesis of (Ba,Ti)-Doped Apatite-Type Lanthanum Silicate Nano-Sized Powders via Microwave-Assisted Sol-Gel Auto-Combustion Route , 2013 .

[6]  Hua Zhang,et al.  Electrical properties of iron doped apatite-type lanthanum silicates , 2012 .

[7]  W. Stręk,et al.  Influence of concentration and sintering temperature on luminescence properties of Eu3+:SnO2 nanocrystallites , 2012 .

[8]  T. Asaka,et al.  Anisotropy of oxide-ion conduction in apatite-type lanthanum silicate , 2012 .

[9]  E. Sastre,et al.  Effect of calcination temperature on structural properties and catalytic activity in oxidation reactions of LaNiO3 perovskite prepared by Pechini method , 2012 .

[10]  T. Fukutsuka,et al.  Effect of cation doping on ionic and electronic properties for lanthanum silicate-based solid electrolytes , 2011 .

[11]  S. Bebelis,et al.  Synthesis and characterization of doped apatite-type lanthanum silicates for SOFC applications , 2011 .

[12]  Hongchang Yao,et al.  New approach to develop dense lanthanum silicate oxyapatite sintered ceramics with high conductivity , 2010 .

[13]  G. Kakali,et al.  Conductivity and electric properties of La1−xSrxMnO3−δ nanopowders , 2009 .

[14]  N. Uvarov,et al.  Fe- and Al-doped apatite-type lanthanum silicates: Structure and property characterization , 2009 .

[15]  H. Yoshioka,et al.  Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions , 2008 .

[16]  C. Estournès,et al.  Influence of synthesis route and composition on electrical properties of La9.33 + xSi6O26 + 3x/2 oxy-apatite compounds , 2008 .

[17]  K. Fukuda,et al.  Synthesis of lanthanum silicate oxyapatite materials as a solid oxide fuel cell electrolyte , 2008 .

[18]  N. Uvarov,et al.  Low-temperature synthesis and characterization of apatite-type lanthanum silicates , 2008 .

[19]  M. Islam,et al.  Local Defect Structures and Ion Transport Mechanisms in the Oxygen-Excess Apatite La9.67(SiO4)6O2.5 , 2008 .

[20]  G. Kakali,et al.  Optimization of LaMO3 (M: Mn, Co, Fe) synthesis through the polymeric precursor route , 2008 .

[21]  J. Frade,et al.  Al‐Doped Apatite‐Type Nanocrystalline Lanthanum Silicates Prepared by Mechanochemical Synthesis: Phase, Structural and Microstructural Study , 2008 .

[22]  M. Islam,et al.  Developing apatites for solid oxide fuel cells: insight into structural, transport and doping properties , 2007 .

[23]  F. Aldinger,et al.  Structural studies of Sr- and Mg-doped LaGaO3 , 2007 .

[24]  M. Islam,et al.  A comparison of the effect of rare earth vs Si site doping on the conductivities of apatite-type rare earth silicates , 2006 .

[25]  D. Bernache-Assollant,et al.  Synthesis and characterization of oxide ions conductors with the apatite structure for intermediate temperature SOFC , 2006 .

[26]  M. Ma̧czka,et al.  Structural, microstructural and vibrational characterization of apatite-type lanthanum silicates prepared by mechanical milling , 2006 .

[27]  F. Ansart,et al.  New chemical route based on sol–gel process for the synthesis of oxyapatite La9.33Si6O26 , 2006 .

[28]  J. Tsay,et al.  Effects of Molar Ratio of Citric Acid to Cations and of pH Value on the Formation and Thermal‐Decomposition Behavior of Barium Titanium Citrate , 2004 .

[29]  M. Islam,et al.  Doping strategies to optimise the oxide ion conductivity in apatite-type ionic conductors. , 2004, Dalton transactions.

[30]  L. León-Reina,et al.  Interstitial oxygen conduction in lanthanum oxy-apatite electrolytes , 2004 .

[31]  Peter R. Slater,et al.  Defect chemistry and oxygen ion migration in the apatite-type materials La9.33Si6O26 and La8Sr2Si6O26 , 2003 .

[32]  M. Islam,et al.  An apatite for fast oxide ion conduction , 2003 .

[33]  P. Slater,et al.  The Synthesis and Characterisation of New Apatite-Type Oxide Ion Conductors , 2003 .

[34]  D. Todorovsky,et al.  Thermal decomposition of lanthanum-titanium citric complexes prepared from ethylene glycol medium , 2002 .

[35]  J. Irvine,et al.  Preparation and characterisation of apatite-type lanthanum silicates by a sol-gel process , 2001 .

[36]  P. Slater,et al.  A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9.33Si6O26 and La8Sr2Si6O26 , 2001 .

[37]  D. Sinclair,et al.  A novel enhancement of ionic conductivity in the cation-deficient apatite La9.33(SiO4)6O2 , 2001 .

[38]  M. Sakamoto,et al.  Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy) , 1998 .

[39]  Y. Sadaoka,et al.  Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3(Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb) , 1995 .

[40]  S. G. Cho,et al.  Thermal decomposition of (Sr, Ti) organic precursors during the Pechini process , 1990 .

[41]  J. A. Díaz,et al.  Study of some aspects of the reactivity of La2O3 with CO2 and H2O , 1985 .