PROGRESS ON THE FABRICATION OF ON-CHIP, INTEGRATED CHALCOGENIDE GLASS (CHG)-BASED SENSORS

In this paper, we review ongoing progress in the development of novel on-chip, low loss planar molecular sensors that address the emerging need in the field of biochemical sensing. Chalcogenide glasses were identified as the material of choice for sensing due to their wide infrared transparency window. We report the details of manufacturing processes used to realize novel high-index-contrast, compact micro-disk resonators. Our findings demonstrate that our device can operate in dual modalities, for detection of the infrared optical absorption of a binding event using cavity enhanced spectroscopy, or sensing refractive index change due to surface molecular binding and extracting micro-structural evolution information via cavity enhanced refractometry.

[1]  Kathleen Richardson,et al.  Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. , 2007, Optics express.

[2]  Kentaro Nakamura,et al.  LETTER TO THE EDITOR: Measuring the optical path length of a plastic optical fibre using the sing-around method and its sensor applications , 2001 .

[3]  N. Feng,et al.  Low-loss high-index-contrast planar waveguides with graded-index cladding layers. , 2007, Optics express.

[4]  William M. Irvine,et al.  Infrared optical properties of water and ice spheres , 1968 .

[5]  L. Zan,et al.  New chalcohalide glasses from the Sb2S3-MXn system , 1995 .

[6]  Pierre Lucas,et al.  Energy landscape and photoinduced structural changes in chalcogenide glasses , 2006 .

[7]  Kristen L. Helton,et al.  Microfluidic Overview of Global Health Issues Microfluidic Diagnostic Technologies for Global Public Health , 2006 .

[8]  Alain Villeneuve,et al.  As 2 S 3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides , 1998 .

[9]  Kathleen Richardson,et al.  Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing. , 2008, Optics letters.

[10]  J. McMullin,et al.  Photoinduced refractive index change in As2Se3 by 633nm illumination. , 2002, Optics express.

[11]  E. M. Vogel,et al.  Tellurite glass: a new candidate for fiber devices , 1994 .

[12]  R. Almeida,et al.  Preparation and Characterization of Germanium Sulfide Based Sol-Gel Planar Waveguides , 2000 .

[13]  Martin Müller,et al.  Examination of poly(butadiene epoxide)-coatings on inorganic surfaces , 1999 .

[14]  Hong-li Ma,et al.  Infrared Glass–Ceramics With Fine Porous Surfaces for Optical Sensor Applications , 2007 .

[15]  J E Heebner,et al.  Sensitive disk resonator photonic biosensor. , 2001, Applied optics.

[16]  Juejun Hu,et al.  Cavity-Enhanced IR Absorption in Planar Chalcogenide Glass Microdisk Resonators: Experiment and Analysis , 2009, Journal of Lightwave Technology.

[17]  Martin Richardson,et al.  Direct femtosecond laser writing of waveguides in As2S3 thin films. , 2004, Optics letters.

[18]  Martin Richardson,et al.  Effect of Ga and Se addition on the “near-surface” photo-response of new Ge-based chalcogenide glasses under IR femtosecond laser exposure , 2009 .

[19]  Hiroyuki Nasu,et al.  Optical third-harmonic generation from some high-index glasses , 1989 .

[20]  Kathleen Richardson,et al.  Refractive index measurements of planar chalcogenide thin film , 2003 .

[21]  H. Fritzsche Toward understanding the photoinduced changes in chalcogenide glasses , 1998 .

[22]  P. Laporta,et al.  Lasing in femtosecond laser written optical waveguides , 2008 .

[23]  Kathleen Richardson,et al.  Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films , 2008 .

[24]  M. Carignano,et al.  Tethered Polymer Layers , 1996 .

[25]  K. Iyer,et al.  Macromolecular anchoring layers for polymer grafting : comparative study , 2006 .

[26]  A. Yariv Universal relations for coupling of optical power between microresonators and dielectric waveguides , 2000 .

[27]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[28]  Kathleen Richardson,et al.  Demonstration of chalcogenide glass racetrack microresonators. , 2008, Optics letters.

[29]  Gwenael Mazé,et al.  Mid-infrared supercontinuum generation to 4.5 microm in ZBLAN fluoride fibers by nanosecond diode pumping. , 2006, Optics letters.

[30]  Martin Richardson,et al.  Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication , 2005 .

[31]  Martin Richardson,et al.  Femtosecond laser photo-response of Ge23Sb7S70 films. , 2008, Optics express.

[32]  Andreas Tünnermann,et al.  Control of directional evanescent coupling in fs laser written waveguides. , 2007, Optics express.

[33]  J. A. Savage,et al.  Optical properties of chalcogenide glasses , 1982 .

[34]  S. Shaji,et al.  NIR vibrational overtone spectra of N-methylaniline, N,N-dimethylaniline and N,N-diethylaniline--a conformational structural analysis using local mode model. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[35]  Kathleen Richardson,et al.  Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides. , 2007, Optics express.

[36]  Tigran Galstian,et al.  Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses , 1999 .

[37]  Juejun Hu,et al.  Design guidelines for optical resonator biochemical sensors , 2009 .

[38]  A. Doraiswamy,et al.  Competitive photostructural effects in Ge-Se glass , 2005 .

[39]  G. Chumanov,et al.  Nano-patterning with polymer brushes viasolvent-assisted polymer grafting , 2008 .

[40]  Steve W. Martin,et al.  Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex , 2005 .

[41]  M D Pelusi,et al.  Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration. , 2007, Optics express.