Deep learning-based incoherent holographic camera enabling acquisition of real-world holograms for holographic streaming system

[1]  Saulius Juodkazis,et al.  Roadmap on Recent Progress in FINCH Technology , 2021, Journal of Imaging.

[2]  Pascal Picart,et al.  Towards Reduced CNNs for De-Noising Phase Images Corrupted with Speckle Noise , 2021, Photonics.

[3]  Jigang Wu,et al.  Image enhancement in lensless inline holographic microscope by inter-modality learning with denoising convolutional neural network , 2021 .

[4]  W. Matusik,et al.  Towards real-time photorealistic 3D holography with deep neural networks , 2021, Nature.

[5]  YIFAN PENG,et al.  Neural holography with camera-in-the-loop training , 2020, ACM Trans. Graph..

[6]  Felix Heide,et al.  Learned hardware-in-the-loop phase retrieval for holographic near-eye displays , 2020, ACM Trans. Graph..

[7]  Kichul Kim,et al.  Slim-panel holographic video display , 2020, Nature Communications.

[8]  Jun Ma,et al.  Speckle noise reduction in coherent imaging based on deep learning without clean data , 2020 .

[9]  Laura Waller,et al.  High resolution étendue expansion for holographic displays , 2020, ACM Trans. Graph..

[10]  Saulius Juodkazis,et al.  Fresnel incoherent correlation holography with single camera shot , 2019, Opto-Electronic Advances.

[11]  Sung-Wook Min,et al.  Compact self-interference incoherent digital holographic camera system with real-time operation. , 2019, Optics express.

[12]  Pascal Picart,et al.  Strategies for reducing speckle noise in digital holography , 2018, Light: Science & Applications.

[13]  S. I. Kim,et al.  7‐2: High‐contrast Encoding Method for Amplitude‐only Computer Generated Hologram , 2018 .

[14]  Colin McGinty,et al.  "Achromatic limits" of Pancharatnam phase lenses. , 2018, Applied optics.

[15]  Shao-Yi Chien,et al.  Occlusion-aware Video Temporal Consistency , 2017, ACM Multimedia.

[16]  T. Tahara,et al.  Single-shot phase-shifting incoherent digital holography , 2017 .

[17]  Ling Shao,et al.  RGB-D datasets using microsoft kinect or similar sensors: a survey , 2017, Multimedia Tools and Applications.

[18]  Jongchan Park,et al.  Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields , 2017, Nature Photonics.

[19]  G. Brooker,et al.  High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers , 2016, Nature Photonics.

[20]  M. Kudenov,et al.  Fabrication of ideal geometric-phase holograms with arbitrary wavefronts , 2015 .

[21]  Sylvain Paris,et al.  Blind video temporal consistency , 2015, ACM Trans. Graph..

[22]  Nisan Siegel,et al.  Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy. , 2014, Optics express.

[23]  Jungkwuen An,et al.  Holographic display with a FPD-based complex spatial light modulator , 2014, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[24]  Joseph Rosen,et al.  Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging. , 2011, Optics express.

[25]  Joseph Rosen,et al.  Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements. , 2010, Optics express.

[26]  S. Benton,et al.  Holographic Imaging , 2008 .

[27]  Joseph Rosen,et al.  Non-scanning motionless fluorescence three-dimensional holographic microscopy , 2008 .

[28]  Joseph Rosen,et al.  Digital spatially incoherent Fresnel holography. , 2007, Optics letters.

[29]  F. S. Roux,et al.  Geometric phase lens. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[30]  Jonghyun Kim,et al.  Optimizing image quality for holographic near-eye displays with Michelson Holography: supplement , 2021 .

[31]  Suyeon Choi,et al.  Neural 3D Holography: Learning Accurate Wave Propagation Models for 3D Holographic Virtual and Augmented Reality Displays —Supplemental Material , 2021 .