Golay-Davis-Jedwab Complementary Sequences and Rudin-Shapiro Constructions
暂无分享,去创建一个
[1] H. Imai,et al. Block Coding Scheme Based on Complementary Sequences for Multicarrier Signals , 1997 .
[2] R. Sivaswamy,et al. Multiphase Complementary Codes , 1978, IEEE Trans. Inf. Theory.
[3] P. Vijay Kumar,et al. Quasi-orthogonal sequences for code-division multiple-access systems , 2000, IEEE Trans. Inf. Theory.
[4] M. Golay. Static multislit spectrometry and its application to the panoramic display of infrared spectra. , 1951, Journal of the Optical Society of America.
[5] Chintha Tellambura,et al. Generalised Rudin-Shapiro Constructions , 2001, Electron. Notes Discret. Math..
[6] Ralph P. Boas. Extremal Problems for Polynomials , 1978 .
[7] C. W. Wyatt-Millington,et al. Simple coding scheme to reduce peak factor in QPSK multicarrier modulation , 1995 .
[8] Patrick Solé,et al. Asymptotic bounds on the covering radius of binary codes , 1990, IEEE Trans. Inf. Theory.
[9] P. ERDbS,et al. Extremal Problems on Polynomials , 1976 .
[10] K. Mercierlaan,et al. The Quantum Entanglement of Bipolar Sequences , 2001 .
[11] Gérard D. Cohen,et al. Covering radius - Survey and recent results , 1985, IEEE Trans. Inf. Theory.
[12] KEITH CONRAD,et al. Tensor Products , 2019, Dirichlet Series and Holomorphic Functions in High Dimensions.
[13] Tom Høholdt,et al. Aperiodic correlations and the merit factor of a class of binary sequences , 1985, IEEE Trans. Inf. Theory.
[14] Robert R. Tucci. A Rudimentary Quantum Compiler , 1998 .
[15] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[16] Kenneth G. Paterson,et al. Efficient Decoding Algorithms for Generalised Reed-Muller Codes , 1998 .
[17] Tom Høholdt,et al. Autocorrelation properties of a class of infinite binary sequences , 1986, IEEE Trans. Inf. Theory.
[18] James A. Davis,et al. Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[19] Mathias Friese,et al. Multitone signals with low crest factor , 1997, IEEE Trans. Commun..
[20] Kenneth G. Paterson,et al. Generalized Reed-Muller codes and power control in OFDM modulation , 1998, IEEE Trans. Inf. Theory.
[21] John Brillhart,et al. A Case Study in Mathematical Research: The Golay-Rudin-Shapiro Sequence , 1996 .
[22] S. Budisin,et al. New complementary pairs of sequences , 1990 .
[23] Robert L. Frank,et al. Polyphase complementary codes , 1980, IEEE Trans. Inf. Theory.
[24] O. Antoine,et al. Theory of Error-correcting Codes , 2022 .
[25] Marcel J. E. Golay,et al. Complementary series , 1961, IRE Trans. Inf. Theory.
[26] R.D.J. van Nee,et al. OFDM codes for peak-to-average power reduction and error correction , 1996 .
[27] Johannes Mykkeltveit. The covering radius of the (128, 8) Reed-Muller code is 56 (Corresp.) , 1980, IEEE Trans. Inf. Theory.
[28] D. Coppersmith. An approximate Fourier transform useful in quantum factoring , 2002, quant-ph/0201067.
[29] Tor Helleseth,et al. On the covering radius of binary codes (Corresp.) , 1978, IEEE Trans. Inf. Theory.
[30] Walter Rudin,et al. Some theorems on Fourier coefficients , 1959 .
[31] Kenneth G. Paterson,et al. On the existence and construction of good codes with low peak-to-average power ratios , 2000, IEEE Trans. Inf. Theory.
[32] M. Parker. Constabent properties of Golay-Davis-Jedwab sequences , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[33] Allan O. Steinhardt,et al. Fast algorithms for digital signal processing , 1986, Proceedings of the IEEE.
[34] Alan E. Jones,et al. Performance of Reed-Muller codes and a maximum-likelihood decoding algorithm for OFDM , 1999, IEEE Trans. Commun..
[35] Anne Canteaut,et al. Propagation Characteristics and Correlation-Immunity of Highly Nonlinear Boolean Functions , 2000, EUROCRYPT.