Golay-Davis-Jedwab Complementary Sequences and Rudin-Shapiro Constructions

A Golay Complementary Sequence (CS) has a Peak-to-AveragePower-Ratio (PAPR) ≤ 2.0 for its one-dimensional continuous Discrete Fourier Transform (DFT) spectrum. Davis and Jedwab showed that all known length 2 CS, (GDJ CS), originate from certain quadratic cosets of Reed-Muller (1,m). These can be generated using the RudinShapiro construction. This paper shows that GDJ CS have a PAPR ≤ 2.0 under all 2m×2m unitary transforms whose rows are unimodular linear (Linear Unimodular Unitary Transforms (LUUTs)), including oneand multi-dimensional generalised DFTs. In this context we define Constahadamard Transforms (CHTs) and show how all LUUTs can be formed from tensor combinations of CHTs. We also propose tensor cosets of GDJ sequences arising from Rudin-Shapiro extensions of near-complementary pairs, thereby generating many more infinite sequence families with tight low PAPR bounds under LUUTs. We then show that GDJ CS have a PAPR ≤ 2m−⌊m2 ⌋ under all 2 × 2 unitary transforms whose rows are linear (Linear Unitary Transforms (LUTs)). Finally we present a radix-2 tensor decomposition of any 2 × 2 LUT. M.G.Parker is with the Code Theory Group, Inst. for Informatikk, Hoyteknologisenteret i Bergen, University of Bergen, Bergen 5020, Norway. E-mail: matthew@ii.uib.no. Web: http://www.ii.uib.no/∼matthew/MattWeb.html C.Tellambura is with the School of Computer Science and Software Engineering, Monash University, Clayton, Victoria 3168, Australia. E-mail: chintha@dgs.monash.edu.au. Phone/Fax: +61 3 9905 3196/5146

[1]  H. Imai,et al.  Block Coding Scheme Based on Complementary Sequences for Multicarrier Signals , 1997 .

[2]  R. Sivaswamy,et al.  Multiphase Complementary Codes , 1978, IEEE Trans. Inf. Theory.

[3]  P. Vijay Kumar,et al.  Quasi-orthogonal sequences for code-division multiple-access systems , 2000, IEEE Trans. Inf. Theory.

[4]  M. Golay Static multislit spectrometry and its application to the panoramic display of infrared spectra. , 1951, Journal of the Optical Society of America.

[5]  Chintha Tellambura,et al.  Generalised Rudin-Shapiro Constructions , 2001, Electron. Notes Discret. Math..

[6]  Ralph P. Boas Extremal Problems for Polynomials , 1978 .

[7]  C. W. Wyatt-Millington,et al.  Simple coding scheme to reduce peak factor in QPSK multicarrier modulation , 1995 .

[8]  Patrick Solé,et al.  Asymptotic bounds on the covering radius of binary codes , 1990, IEEE Trans. Inf. Theory.

[9]  P. ERDbS,et al.  Extremal Problems on Polynomials , 1976 .

[10]  K. Mercierlaan,et al.  The Quantum Entanglement of Bipolar Sequences , 2001 .

[11]  Gérard D. Cohen,et al.  Covering radius - Survey and recent results , 1985, IEEE Trans. Inf. Theory.

[12]  KEITH CONRAD,et al.  Tensor Products , 2019, Dirichlet Series and Holomorphic Functions in High Dimensions.

[13]  Tom Høholdt,et al.  Aperiodic correlations and the merit factor of a class of binary sequences , 1985, IEEE Trans. Inf. Theory.

[14]  Robert R. Tucci A Rudimentary Quantum Compiler , 1998 .

[15]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[16]  Kenneth G. Paterson,et al.  Efficient Decoding Algorithms for Generalised Reed-Muller Codes , 1998 .

[17]  Tom Høholdt,et al.  Autocorrelation properties of a class of infinite binary sequences , 1986, IEEE Trans. Inf. Theory.

[18]  James A. Davis,et al.  Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[19]  Mathias Friese,et al.  Multitone signals with low crest factor , 1997, IEEE Trans. Commun..

[20]  Kenneth G. Paterson,et al.  Generalized Reed-Muller codes and power control in OFDM modulation , 1998, IEEE Trans. Inf. Theory.

[21]  John Brillhart,et al.  A Case Study in Mathematical Research: The Golay-Rudin-Shapiro Sequence , 1996 .

[22]  S. Budisin,et al.  New complementary pairs of sequences , 1990 .

[23]  Robert L. Frank,et al.  Polyphase complementary codes , 1980, IEEE Trans. Inf. Theory.

[24]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[25]  Marcel J. E. Golay,et al.  Complementary series , 1961, IRE Trans. Inf. Theory.

[26]  R.D.J. van Nee,et al.  OFDM codes for peak-to-average power reduction and error correction , 1996 .

[27]  Johannes Mykkeltveit The covering radius of the (128, 8) Reed-Muller code is 56 (Corresp.) , 1980, IEEE Trans. Inf. Theory.

[28]  D. Coppersmith An approximate Fourier transform useful in quantum factoring , 2002, quant-ph/0201067.

[29]  Tor Helleseth,et al.  On the covering radius of binary codes (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[30]  Walter Rudin,et al.  Some theorems on Fourier coefficients , 1959 .

[31]  Kenneth G. Paterson,et al.  On the existence and construction of good codes with low peak-to-average power ratios , 2000, IEEE Trans. Inf. Theory.

[32]  M. Parker Constabent properties of Golay-Davis-Jedwab sequences , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[33]  Allan O. Steinhardt,et al.  Fast algorithms for digital signal processing , 1986, Proceedings of the IEEE.

[34]  Alan E. Jones,et al.  Performance of Reed-Muller codes and a maximum-likelihood decoding algorithm for OFDM , 1999, IEEE Trans. Commun..

[35]  Anne Canteaut,et al.  Propagation Characteristics and Correlation-Immunity of Highly Nonlinear Boolean Functions , 2000, EUROCRYPT.