Role of translational entropy in spatially inhomogeneous, coarse-grained models

Coarse-grained models of polymer and biomolecular systems have enabled the computational study of cooperative phenomena, e.g., self-assembly, by lumping multiple atomistic degrees of freedom along the backbone of a polymer, lipid, or DNA molecule into one effective coarse-grained interaction center. Such a coarse-graining strategy leaves the number of molecules unaltered. In order to treat the surrounding solvent or counterions on the same coarse-grained level of description, one can also stochastically group several of those small molecules into an effective, coarse-grained solvent bead or “fluid element.” Such a procedure reduces the number of molecules, and we discuss how to compensate the concomitant loss of translational entropy by density-dependent interactions in spatially inhomogeneous systems.

[1]  Pep Español,et al.  INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 35 (2002) 1605–1625 PII: S0305-4470(02)28700-4 , 2022 .

[2]  Siewert J Marrink,et al.  Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites. , 2011, Physical chemistry chemical physics : PCCP.

[3]  Pep Español,et al.  Smoothed dissipative particle dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Tanmoy Sanyal,et al.  Coarse-grained models using local-density potentials optimized with the relative entropy: Application to implicit solvation. , 2016, The Journal of chemical physics.

[5]  Dirk Reith,et al.  Deriving effective mesoscale potentials from atomistic simulations , 2002, J. Comput. Chem..

[6]  A. Louis Beware of density dependent pair potentials , 2002, cond-mat/0205110.

[7]  I. Pagonabarraga,et al.  Dissipative particle dynamics for interacting systems , 2001, cond-mat/0105075.

[8]  A. Lyubartsev,et al.  Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  P. Español,et al.  Perspective: Dissipative particle dynamics. , 2016, The Journal of chemical physics.

[10]  B. Rice,et al.  Particle-based multiscale coarse graining with density-dependent potentials: application to molecular crystals (hexahydro-1,3,5-trinitro-s-triazine). , 2011, The Journal of chemical physics.

[11]  Structure-based coarse-graining for inhomogeneous liquid polymer systems. , 2013, The Journal of chemical physics.

[12]  Gregory A. Voth,et al.  Extending the range and physical accuracy of coarse-grained models: Order parameter dependent interactions. , 2017, The Journal of chemical physics.

[13]  Concentration and energy fluctuations in a critical polymer mixture. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  D. Schwartz,et al.  A coarse grain model for DNA. , 2007, The Journal of chemical physics.

[15]  Nils B Becker,et al.  From rigid base pairs to semiflexible polymers: coarse-graining DNA. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Michael R DeLyser,et al.  Extending pressure-matching to inhomogeneous systems via local-density potentials. , 2017, The Journal of chemical physics.

[17]  Kurt Kremer,et al.  Bridging the Gap Between Atomistic and Coarse-Grained Models of Polymers: Status and Perspectives , 2000 .

[18]  K. Kremer,et al.  Adaptive resolution simulation of salt solutions , 2013 .

[19]  Gregory A Voth,et al.  Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: a new method for force-matching. , 2004, The Journal of chemical physics.

[20]  M Scott Shell,et al.  The relative entropy is fundamental to multiscale and inverse thermodynamic problems. , 2008, The Journal of chemical physics.

[21]  M. Scott Shell,et al.  The impact of resolution upon entropy and information in coarse-grained models. , 2015, The Journal of chemical physics.

[22]  A C Maggs,et al.  Computer simulations of self-assembled membranes. , 1991, Science.

[23]  Marcus Müller,et al.  Coarse‐grained models and collective phenomena in membranes: Computer simulation of membrane fusion , 2003 .

[24]  Ilpo Vattulainen,et al.  On Coarse-Graining by the Inverse Monte Carlo Method: Dissipative Particle Dynamics Simulations Made to a Precise Tool in Soft Matter Modeling , 2002, cond-mat/0303583.

[25]  Dynamical Monte Carlo study of equilibrium polymers: Static properties , 1998, cond-mat/9805263.

[26]  W G Noid,et al.  Perspective: Coarse-grained models for biomolecular systems. , 2013, The Journal of chemical physics.

[27]  Murray S. Daw,et al.  The embedded-atom method: a review of theory and applications , 1993 .

[28]  P. G. de Gennes,et al.  Exponents for the excluded volume problem as derived by the Wilson method , 1972 .

[29]  Benoît Roux,et al.  The Theory of Ultra-Coarse-Graining. 1. General Principles. , 2013, Journal of chemical theory and computation.

[30]  Marcus Müller,et al.  Main phase transition in lipid bilayers: Phase coexistence and line tension in a soft, solvent-free, coarse-grained model. , 2010, The Journal of chemical physics.

[31]  Gabriel Stoltz Stable schemes for dissipative particle dynamics with conserved energy , 2017, J. Comput. Phys..

[32]  Peter V. Coveney,et al.  From Molecular Dynamics to Dissipative Particle Dynamics , 1999 .

[33]  Ilpo Vattulainen,et al.  Multiscale modeling of emergent materials: biological and soft matter. , 2009, Physical chemistry chemical physics : PCCP.

[34]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[35]  Matej Praprotnik,et al.  Multiscale simulation of soft matter: from scale bridging to adaptive resolution. , 2008, Annual review of physical chemistry.

[36]  Christian Holm,et al.  Fraction of Condensed Counterions around a Charged Rod: Comparison of Poisson−Boltzmann Theory and Computer Simulations , 2000 .

[37]  K. Daoulas,et al.  Phase behaviour of quasi-block copolymers: A DFT-based Monte-Carlo study , 2009 .

[38]  Gregory C Rutledge,et al.  A novel algorithm for creating coarse-grained, density dependent implicit solvent models. , 2008, The Journal of chemical physics.

[39]  Marcus Müller,et al.  Studying Amphiphilic Self-assembly with Soft Coarse-Grained Models , 2011 .

[40]  M. Praprotnik,et al.  Adaptive Resolution Simulation of Supramolecular Water: The Concurrent Making, Breaking, and Remaking of Water Bundles , 2016, Journal of chemical theory and computation.

[41]  G. Stoltz,et al.  Local density dependent potential for compressible mesoparticles. , 2013, The Journal of chemical physics.

[42]  K. Freed,et al.  Renormalization and the two-parameter theory , 1984 .

[43]  Matej Praprotnik,et al.  Molecular systems with open boundaries: Theory and simulation , 2017 .

[44]  Markus Schöberl,et al.  Predictive coarse-graining , 2016, J. Comput. Phys..

[45]  P. Español,et al.  Dissipative particle dynamics with energy conservation , 1997 .

[46]  Jim Pfaendtner,et al.  A systematic methodology for defining coarse-grained sites in large biomolecules. , 2008, Biophysical journal.

[47]  M. Müller,et al.  eMC: A Monte Carlo scheme with energy conservation , 2016 .

[48]  Nicholas J H Dunn,et al.  Van der Waals Perspective on Coarse-Graining: Progress toward Solving Representability and Transferability Problems. , 2016, Accounts of chemical research.

[49]  Gregory A Voth,et al.  Bridging microscopic and mesoscopic simulations of lipid bilayers. , 2002, Biophysical journal.

[50]  Roland Faller Automatic coarse graining of polymers , 2004 .

[51]  Lars V. Schäfer,et al.  Systematic evaluation of bundled SPC water for biomolecular simulations. , 2015, Physical chemistry chemical physics : PCCP.

[52]  Peter Sollich,et al.  Grand canonical ensemble simulation studies of polydisperse fluids , 2001, cond-mat/0111274.

[53]  M. Deserno,et al.  Systematic implicit solvent coarse-graining of bilayer membranes: lipid and phase transferability of the force field , 2010, New journal of physics.

[54]  M. Michels,et al.  Constant-pressure simulations with dissipative particle dynamics. , 2005, The Journal of chemical physics.

[55]  J. Ávalos,et al.  Dissipative particle dynamics with energy conservation , 1997, cond-mat/9706217.

[56]  K. Gubbins,et al.  Coarse graining of nonbonded degrees of freedom. , 2007, Physical review letters.

[57]  Florian Müller-Plathe,et al.  Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[58]  O. Borodin,et al.  cDPD: A new dissipative particle dynamics method for modeling electrokinetic phenomena at the mesoscale. , 2016, The Journal of chemical physics.