In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production.

[1]  Gregory Stephanopoulos,et al.  Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets , 2005, Nature Biotechnology.

[2]  Kiran Raosaheb Patil,et al.  Use of genome-scale microbial models for metabolic engineering. , 2004, Current opinion in biotechnology.

[3]  Jens Nielsen,et al.  Metabolic Engineering of Ammonium Assimilation in Xylose-Fermenting Saccharomyces cerevisiae Improves Ethanol Production , 2003, Applied and Environmental Microbiology.

[4]  B. Palsson,et al.  Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. , 2003, Genome research.

[5]  Gregory Stephanopoulos,et al.  Metabolic engineering by genome shuffling , 2002, Nature Biotechnology.

[6]  A. Burgard,et al.  Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions. , 2001, Biotechnology and bioengineering.

[7]  B O Palsson,et al.  Metabolic modeling of microbial strains in silico. , 2001, Trends in biochemical sciences.

[8]  J. Nielsen,et al.  Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2‐oxoglutarate due to depletion of the NADPH pool , 2001, Yeast.

[9]  F. Zimmermann,et al.  Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae , 2000, Yeast.

[10]  Duboc,et al.  An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. , 2000, Enzyme and microbial technology.

[11]  J. Nielsen,et al.  Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis , 2000, Yeast.

[12]  James E. Bailey,et al.  Lessons from metabolic engineering for functional genomics and drug discovery , 1999, Nature Biotechnology.

[13]  L. Gustafsson,et al.  Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae , 1998, Applied Microbiology and Biotechnology.

[14]  E. Papoutsakis Express together and conquer , 1998, Nature Biotechnology.

[15]  G. Lidén,et al.  Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae , 1997, Applied and environmental microbiology.

[16]  M. Kielland-Brandt,et al.  BAP2, a gene encoding a permease for branched-chain amino acids in Saccharomyces cerevisiae. , 1995, Biochimica et biophysica acta.

[17]  A. Blomberg,et al.  Cloning and characterization of GPD2, a second gene encoding sn‐glycerol 3‐phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1 , 1995, Molecular microbiology.

[18]  D. Cvitkovitch,et al.  Sequence, expression, and function of the gene for the nonphosphorylating, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase of Streptococcus mutans , 1995, Journal of bacteriology.

[19]  K. Larsson,et al.  A gene encoding sn‐glycerol 3‐phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae , 1993, Molecular microbiology.

[20]  W. A. Scheffers,et al.  Effect of benzoic acid on metabolic fluxes in yeasts: A continuous‐culture study on the regulation of respiration and alcoholic fermentation , 1992, Yeast.

[21]  J. Bailey,et al.  Toward a science of metabolic engineering , 1991, Science.

[22]  B. Magasanik,et al.  Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae , 1990, Journal of bacteriology.

[23]  W. A. Scheffers,et al.  Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. , 1990, Journal of general microbiology.

[24]  F. Zimmermann,et al.  Overproduction of glycolytic enzymes in yeast , 1989, Yeast.

[25]  Johannes P. van Dijken,et al.  Redox balances in the metabolism of sugars by yeasts (NAD(H); NADP(H); glucose metabolism; xylose fermentation; ethanol; Crabtree effect; Custers effect) , 1986 .

[26]  V. Crow,et al.  Separation and properties of NAD+- and NADP+-dependent glyceraldehyde-3-phosphate dehydrogenases from Streptococcus mutans. , 1979, The Journal of biological chemistry.

[27]  D. Arnon,et al.  A New Glyceraldehyde Phosphate Dehydrogenase from Photosynthetic Tissues , 1954, Nature.

[28]  Oliver H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[29]  C. Roca,et al.  Increasing ethanol productivity during xylose fermentation by cell recycling of recombinant Saccharomyces cerevisiae , 2002, Applied Microbiology and Biotechnology.

[30]  S. Lee,et al.  In silico metabolic pathway analysis and design: succinic acid production by metabolically engineered Escherichia coli as an example. , 2002, Genome informatics. International Conference on Genome Informatics.

[31]  Susumu Goto,et al.  LIGAND: database of chemical compounds and reactions in biological pathways , 2002, Nucleic Acids Res..

[32]  J Villadsen,et al.  Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. , 2000, Metabolic engineering.

[33]  J. Nielsen,et al.  Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. , 1997, Microbiology.