Enhanced vertical transport in p-type AlGaN∕GaN superlattices

We report on p-type AlGaN∕GaN superlattice designs with significantly improved vertical and lateral electrical conductivities (σV and σL). Composition-graded p-AlGaN layers produce a polarization charge distribution, which together with an appropriate Mg doping in the structure leads to more than an eightfold reduction of barrier height and a ∼50% increase in the sheet hole density in the p-GaN wells compared to typical modulation-doped superlattice structures. Using the optimized structure, more than 13 orders of magnitude and 35 times improvement is shown for σV, compared to typical superlattice and σL, compared to bulk p-GaN, respectively. Both σV and σL are found to improve significantly at higher temperatures in the optimized structure.

[1]  F. Ren,et al.  Temperature dependence of pnp GaN/InGaN HBT performance , 2004 .

[2]  Experimental study of perpendicular transport in weakly coupled AlxGa1−xN/GaN superlattices , 2003 .

[3]  Andrei Osinsky,et al.  Minority electron transport anisotropy in p-type Al/sub x/Ga/sub 1-x/N/GaN superlattices , 2001 .

[4]  A. Osinsky,et al.  Experimental and theoretical study of acceptor activation and transport properties in p-type AlxGa1−xN/GaN superlattices , 2000 .

[5]  M. Hattendorf,et al.  Temperature dependent common emitter current gain and collector-emitter offset voltage study in AlGaN/GaN heterojunction bipolar transistors , 2001, IEEE Electron Device Letters.

[6]  S. Pearton,et al.  Electrical and optical properties of modulation-doped p-AlGaN/GaN superlattices , 2001 .

[7]  Nicolas Grandjean,et al.  Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells , 1999 .

[8]  Mark J. W. Rodwell,et al.  GaN HBT: toward an RF device , 2001 .

[9]  E. Yu,et al.  Enhancement of base conductivity via the piezoelectric effect in AlGaN/GaN HBTs , 2000 .

[10]  Hadis Morkoç,et al.  Valence‐band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x‐ray photoemission spectroscopy , 1996 .

[11]  R. Street,et al.  Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition , 1996 .

[12]  Tanakorn Osotchan,et al.  Electron mobilities in gallium, indium, and aluminum nitrides , 1994 .

[13]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[14]  W. Grieshaber,et al.  Enhancement of deep acceptor activation in semiconductors by superlattice doping , 1996 .

[15]  F. Ren,et al.  300°C GaN/AlGaN Heterojunction Bipolar Transistor , 1998 .

[16]  David L. Pulfrey,et al.  Performance predictions for n-p-n Al/sub x/Ga/sub 1-x/N/GaN HBTs , 2001 .

[17]  S. Denbaars,et al.  High conductivity modulation doped AlGaN/GaN multiple channel heterostructures , 2003 .

[18]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.