Generalized probabilities taking values in non-Archimedean fields and in topological groups

We develop an analog of probability theory for probabilities taking values in topological groups. We generalize Kolmogorov’s method of axiomatization of probability theory, and the main distinguishing features of frequency probabilities are taken as axioms in the measure-theoretic approach. We also present a survey of non-Kolmogorovian probabilistic models, including models with negative-, complex-, and p-adic-valued probabilities. The last model is discussed in detail. The introduction of probabilities with p-adic values (as well as with more general non-Archimedean values) is one of the main motivations to consider generalized probabilities with values in more general topological groups than the additive group of real numbers. We also discuss applications of non-Kolmogorovian models in physics and cognitive sciences. A part of the paper is devoted to statistical interpretation of probabilities with values in topological groups (in particular, in non-Archimedean fields).

[1]  E. Prugovec̆ki,et al.  A postulational framework for theories of simultaneous measurement of several observables , 1973 .

[2]  R. Mises Grundlagen der Wahrscheinlichkeitsrechnung , 1919 .

[3]  Per Martin-Löf,et al.  The Definition of Random Sequences , 1966, Inf. Control..

[4]  R. Shah,et al.  Semistable Selfdecomposable Laws on Groups , 2001 .

[5]  E. Thiran,et al.  p-adic dynamics , 1989 .

[6]  Paul Adrien Maurice Dirac,et al.  Bakerian Lecture - The physical interpretation of quantum mechanics , 1942, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[7]  W. Hazod Some new limit theorems for vector space- and group-valued random variables , 1999 .

[8]  Igor Volovich,et al.  p-adic string , 1987 .

[9]  Andrew Khrennikov,et al.  p-adic probability interpretation of Bell's inequality , 1995 .

[10]  Luigi Accardi,et al.  The Probabilistic Roots of the Quantum Mechanical Paradoxes , 1984 .

[11]  A. Kolmogoroff Grundbegriffe der Wahrscheinlichkeitsrechnung , 1933 .

[12]  Edward Witten,et al.  ADELIC STRING AMPLITUDES , 1987 .

[13]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[14]  A. Bendikov,et al.  Brownian motion on compact groups in infinite dimension , 2000 .

[15]  R. Shah Infinitely divisible measures onp-adic groups , 1991 .

[16]  Andrew Khrennikov,et al.  p-Adic stochastics and Dirac quantization with negative probabilities , 1995 .

[17]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[18]  Sergio Albeverio,et al.  Representations of the Weyl group in spaces of square integrable functions with respect to p-adic valued Gaussian distributions , 1996 .

[19]  Herbert Heyer,et al.  Probability Measures on Locally Compact Groups , 1977 .

[20]  P-ADIC PROBABILITY AND STATISTICS , 1992 .

[21]  Andrei Khrennikov,et al.  A perturbation of CHSH inequality induced by fluctuations of ensemble distributions , 2000 .

[22]  P. Freund,et al.  Non-archimedean strings , 1987 .

[23]  Jean-Pierre Vigier,et al.  A review of extended probabilities , 1986 .

[24]  S Albeverio,et al.  Memory retrieval as a p-adic dynamical system. , 1999, Bio Systems.

[25]  I. Melnikova Well-posedness of differential-operator problems. I: The Cauchy problem in spaces of distributions , 1999 .

[26]  Gunter Ludwig,et al.  CHAPTER IV – The Physical Interpretation of Quantum Mechanics , 1968 .

[27]  Jean-Luc Ville Étude critique de la notion de collectif , 1939 .

[28]  P. Dirac On the Analogy Between Classical and Quantum Mechanics , 1945 .

[29]  Andrew Khrennikov,et al.  p-adic probability distributions of hidden variables , 1995 .

[30]  A. Khrennikov,et al.  Interpretations of Probability and Their p-Adic Extensions , 2002 .

[31]  A. F. Monna,et al.  Intégration non-archimédienne II , 1963 .