A Note on Some Languages in Uniform ACC0

`ACC'' IS THE CLASS OF LANGUAGES RECOGNIZED BY CIRCUIT FAMILIES WITH POLYNOMIAL SIZE, CONSTANT DEPTH, AND UNBOUNDED FAN-IN, WHERE GATES MAY CALCULATE THE `AND'', `OR'', OR `MOD C'' FUNCTION FOR CONSTANT `C''. ROBUST UNIFORMITY DEFINITIONS FOR `ACC'' AND RELATED CLASSES WERE GIVEN BY BARRINGTON, IMMERMAN, AND STRAUBING [3]. HERE WE SHOW THAT UNIFORM `ACC'' CONTAINS ALL SEMI-LINEAR OR RATIONAL SETS OF INTEGER VECTORS, USING BINARY NOTATION (SHARPENING A RESULT OF IBARRA, JIANG, RAVIKUMAR, AND CHANG [10]).

[1]  Rohit Parikh,et al.  On Context-Free Languages , 1966, JACM.

[2]  Neil Immerman,et al.  On Uniformity within NC¹ , 1990, J. Comput. Syst. Sci..

[3]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[4]  Neil Immerman,et al.  Expressibility and Parallel Complexity , 1989, SIAM J. Comput..

[5]  S. Ginsburg,et al.  BOUNDED ALGOL-LIKE LANGUAGES^) , 1964 .

[6]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[7]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[8]  Pavel Pudlák,et al.  Threshold circuits of bounded depth , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[9]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[10]  Georg Schnitger,et al.  Parallel Computation with Threshold Functions , 1988, J. Comput. Syst. Sci..

[11]  Pierre Péladeau Logically Defined Subsets of Nk , 1989, MFCS.

[12]  Uzi Vishkin,et al.  Constant Depth Reducibility , 1984, SIAM J. Comput..

[13]  Samuel R. Buss,et al.  The Boolean formula value problem is in ALOGTIME , 1987, STOC.

[14]  Tao Jiang,et al.  On Some Languages in NC , 1988, AWOC.

[15]  M. Schützenberger,et al.  Rational sets in commutative monoids , 1969 .

[16]  Walter L. Ruzzo On Uniform Circuit Complexity , 1981, J. Comput. Syst. Sci..

[17]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[18]  N. Immerman,et al.  On uniformity within NC 1 . , 1988 .