Q and Q, T-analogs of Non-commutative Symmetric Functions
暂无分享,去创建一个
[1] Florent Hivert,et al. Hecke Algebras, Difference Operators, and Quasi-Symmetric Functions , 2000 .
[2] François Bergeron,et al. Identities and Positivity Conjectures for some remarkable Operators in the Theory of Symmetric Functions , 1999 .
[3] A. Lascoux,et al. Noncommutative symmetric functions and quasi-symmetric functions with two and more paramters , 2001 .
[4] J. F. van Diejen,et al. Algebraic Methods and 𝑞-Special Functions , 1999 .
[5] C. Reutenauer,et al. Duality between Quasi-Symmetrical Functions and the Solomon Descent Algebra , 1995 .
[6] Mike Zabrocki. Ribbon Operators and Hall–Littlewood Symmetric Functions , 2000 .
[7] Alain Lascoux,et al. Noncommutative symmetric functions , 1994 .
[8] Mike Zabrocki. q-Analogs of symmetric function operators , 2002, Discret. Math..
[9] Alain Lascoux,et al. Hecke algebras at roots of unity and crystal bases of quantum affine algebras , 1996 .
[10] Mark Haiman,et al. Conjectures on the Quotient Ring by Diagonal Invariants , 1994 .
[11] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[12] Adriano M. Garsia,et al. A proof of the q, t-Catalan positivity conjecture , 2002, Discret. Math..
[13] Israel M. Gelfand,et al. Noncommutative Symmetrical Functions , 1995 .