Feedback linearization of RF power amplifiers

Improving the performance of the power amplifier is the most pressing problem facing designers of modern radio-frequency (RF) transceivers. Linearity and power efficiency of the transmit path are of utmost importance, and the power amplifier has proven to be the bottleneck for both. High linearity enables transmission at the highest data rates for a given channel bandwidth, and power efficiency prolongs battery lifetime in portable units and reduces heat dissipation in high-power transmitters. Cartesian feedback is a power amplifier linearization technique that acts to soften the tradeoff between power efficiency and linearity in power amplifiers. Despite its compelling, fundamental advantages, the technique has not enjoyed widespread acceptance because of certain implementation difficulties. Feedback Linearization of RF Power Amplifiers introduces new techniques for overcoming the challenges faced by the designer of a Cartesian feedback system. The theory of the new techniques are described and analyzed in detail. The book culminates with the results of the first known fully integrated Cartesian feedback power amplifier system, whose design was enabled by the techniques described. Feedback Linearization of RF Power Amplifiers is a valuable reference work for engineers in the telecommunications industry, industry researchers, academic researchers.

[1]  W. McFarland,et al.  An IC for linearizing RF power amplifiers using envelope elimination and restoration , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[2]  N. Imai,et al.  Novel linearizer using balanced circulators and its application to multilevel digital radio systems , 1989 .

[3]  Yong Soo Cho,et al.  On compensating nonlinear distortions of an OFDM system using an efficient adaptive predistorter , 1999, IEEE Trans. Commun..

[4]  Michael Faulkner,et al.  Performance of automatic phase adjustment using supply current minimisation in a RF feedback lineariser , 1997, Proceedings of 8th International Symposium on Personal, Indoor and Mobile Radio Communications - PIMRC '97.

[5]  A. Bakker,et al.  A CMOS nested-chopper instrumentation amplifier with 100-nV offset , 2000, IEEE Journal of Solid-State Circuits.

[6]  Stephen P. Boyd,et al.  Optimal design of a CMOS op-amp via geometric programming , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[7]  M.J.M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[8]  Paul R. Gray,et al.  A 10 b, 20 Msample/s, 35 mW pipeline A/D converter , 1995, IEEE J. Solid State Circuits.

[9]  Stephen P. Boyd,et al.  GPCAD: a tool for CMOS op-amp synthesis , 1998, 1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287).

[10]  Sven-Gustav Häggman,et al.  New aspects on nonlinear power amplifier modeling in radio communication system simulations , 1997, Proceedings of 8th International Symposium on Personal, Indoor and Mobile Radio Communications - PIMRC '97.

[11]  J. P. McGeehan,et al.  The frequency-hopped Cartesian feedback linear transmitter , 1996 .

[12]  S. I. Long,et al.  A physically based analytic model of FET Class-E power amplifiers-designing for maximum PAE , 1999 .

[13]  James K. Roberge,et al.  Operational Amplifiers: Theory and Practice , 1975 .

[14]  H. F. Ragaie,et al.  RC sequence asymmetric polyphase networks for RF integrated transceivers , 2000 .

[15]  Q. Huang A 200nV offset 6.5nV/*Hz noise PSD 5.6kHz chopper instrumentation amplifier in 1μm digital CMOS , 2001 .

[16]  Edgar Sanchez-Sinencio,et al.  CMOS transconductance multipliers: a tutorial , 1998 .

[17]  S. Haggman,et al.  Comparison of measured and simulated /spl pi//4-DQPSK adjacent channel power using a functional high power amplifier model , 1998, VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151).

[18]  Stephen P. Boyd,et al.  Optimal allocation of local feedback in multistage amplifiers via geometric programming , 2001 .

[19]  Thomas H. Lee,et al.  Automatic phase alignment for high bandwidth Cartesian feedback power amplifiers , 2000, RAWCON 2000. 2000 IEEE Radio and Wireless Conference (Cat. No.00EX404).

[20]  A. Bernardini,et al.  Application of neural waveform predistortion to experimental TWT data , 1991, [1991 Proceedings] 6th Mediterranean Electrotechnical Conference.

[21]  J. Ecker Geometric Programming: Methods, Computations and Applications , 1980 .

[22]  David R. Cox,et al.  Linear Amplification with Nonlinear Components , 1974, IEEE Trans. Commun..

[23]  P.R. Gray,et al.  MOS operational amplifier design-a tutorial overview , 1982, IEEE Journal of Solid-State Circuits.

[24]  H. F. Ragaie,et al.  On the design and sensitivity of RC sequence asymmetric polyphase networks in RF integrated transceivers , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[25]  T.H. Lee,et al.  Automatic phase alignment for a fully integrated CMOS Cartesian feedback power amplifier system , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[26]  E. Camargo,et al.  MESFET nonlinearities applied to predistortion linearizer design , 1992, 1992 IEEE Microwave Symposium Digest MTT-S.

[27]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[28]  R. Achatz,et al.  Power amplifier model for optimizing battery current, interference, and link margin , 1998, 1998 IEEE EMC Symposium. International Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No.98CH36253).

[29]  A.S. Sedra,et al.  Analog MOS integrated circuits for signal processing , 1987, Proceedings of the IEEE.

[30]  D. C. Cox,et al.  Improving the Power-Added Efficiency of FET Amplifiers Operating with Varying-Envelope Signals , 1983 .

[31]  W. Rugh Nonlinear System Theory: The Volterra / Wiener Approach , 1981 .

[32]  C. J. Clark,et al.  Time-domain envelope measurement technique with application to wideband power amplifier modeling , 1998 .

[33]  G. Geelen,et al.  A fast-settling CMOS op amp for SC circuits with 90-dB DC gain , 1990 .

[34]  Lars Sundström,et al.  Linearisation of RF multicarrier amplifiers using Cartesian feedback , 1994 .

[35]  David R. Cox Linear Amplification by Sampling Techniques: A New Application for Delta Coders , 1975, IEEE Trans. Commun..

[36]  A. A. Moulthrop,et al.  Optimal-filter approach for nonlinear power amplifier modeling and equalization , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[37]  P. Gray,et al.  High-frequency CMOS switched-capacitor filters for communications application , 1983 .

[38]  G. Karam,et al.  Implementation and performance of data predistortion with memory in digital microwave radio , 1989, IEEE Global Telecommunications Conference, 1989, and Exhibition. 'Communications Technology for the 1990s and Beyond.

[39]  David R. Cox,et al.  A VHF Implementation of a LINC Amplifier , 1976, IEEE Trans. Commun..

[40]  Eisuke Fukuda,et al.  Cartesian feedback amplifier with soft landing , 1992, [1992 Proceedings] The Third IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[41]  T. R. Viswanathan,et al.  Switched-capacitor integrator with reduced sensitivity to amplifier gain , 1986 .

[42]  W. Siebert Circuits, Signals and Systems , 1985 .

[43]  Stephen P. Boyd,et al.  Optimization of inductor circuits via geometric programming , 1999, Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361).

[44]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[45]  H. S. Black,et al.  Stabilized feedback amplifiers , 1934 .

[46]  Michael Faulkner,et al.  Dynamically biased Cartesian feedback linearization , 1993, IEEE 43rd Vehicular Technology Conference.

[47]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[48]  D. M. Haines,et al.  Linear transceiver architectures , 1988, 38th IEEE Vehicular Technology Conference.

[49]  M. Johansson,et al.  Linearised high-efficiency power amplifier for PCN , 1991 .

[50]  J.R. Cruz,et al.  W-CDMA power amplifier modeling , 2001, IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No.01CH37211).

[51]  Stephen P. Boyd,et al.  Automated design of folded-cascode op-amps with sensitivity analysis , 1998, 1998 IEEE International Conference on Electronics, Circuits and Systems. Surfing the Waves of Science and Technology (Cat. No.98EX196).

[52]  P.J. Nagle,et al.  A wideband linear amplitude modulator for polar transmitters based on the concept of interleaving delta modulation , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[53]  S. Watanabe Power amplifier modeling issues and advancement in Japan , 1999, GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 21st Annual. Technical Digest 1999 (Cat. No.99CH36369).

[54]  Michiel Steyaert,et al.  A 1.5 GHz highly linear CMOS downconversion mixer , 1995, IEEE J. Solid State Circuits.

[55]  Yinyu Ye,et al.  An infeasible interior-point algorithm for solving primal and dual geometric programs , 1997, Math. Program..