Even periodic and odd periodic complementary sequence pairs from generalized Boolean functions

A pair of two sequences is called the even periodic (odd periodic) complementary sequence pair if the sum of their even periodic (odd periodic) correlation function is a delta function. The well-known Golay aperiodic complementary sequence pair (Golay pair) is a special case of even periodic (odd periodic) complementary sequence pair. In this paper, we presented several classes of even periodic and odd periodic complementary pairs based on the generalized Boolean functions, but which do not form Gloay pairs. The proposed sequences could be used to design signal sets, which have been applied in direct sequence code division multiple (DS-CDMA) cellular communication systems.

[1]  M. Pursley,et al.  Performance Evaluation for Phase-Coded Spread-Spectrum Multiple-Access Communication - Part I: System Analysis , 1977, IEEE Transactions on Communications.

[2]  L. Varshney Radar Principles , 2005 .

[3]  M. Pursley,et al.  Performance Evaluation for Phase-Coded Spread-Spectrum Multiple-Access Communication - Part II: Code Sequence Analysis , 1977, IEEE Transactions on Communications.

[4]  Dimitris A. Pados,et al.  New bounds on the total squared correlation and optimum design of DS-CDMA binary signature sets , 2003, IEEE Trans. Commun..

[5]  C.-C. TSENG,et al.  Complementary sets of sequences , 1972, IEEE Trans. Inf. Theory.

[6]  M.B. Pursley,et al.  Crosscorrelation properties of pseudorandom and related sequences , 1980, Proceedings of the IEEE.

[7]  Jennifer Wallis,et al.  On Hadamard matrices , 1975 .

[8]  M. Golay Multi-slit spectrometry. , 1949, Journal of the Optical Society of America.

[9]  H. D. Luke,et al.  Binary odd-periodic complementary sequences , 1997, IEEE Trans. Inf. Theory.

[10]  Guang Gong,et al.  Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar , 2005 .

[11]  J. Jedwab,et al.  Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[12]  Dilip V. Sarwate Meeting the Welch Bound with Equality , 1998, SETA.

[13]  Marcel J. E. Golay,et al.  Complementary series , 1961, IRE Trans. Inf. Theory.

[14]  Hong Wen,et al.  Design of odd-periodic complementary binary signal set , 2004, Proceedings. ISCC 2004. Ninth International Symposium on Computers And Communications (IEEE Cat. No.04TH8769).

[15]  Zhi-Hua Liu,et al.  The Necessary Condition of Families of Odd-Periodic Perfect Complementary Sequence Pairs , 2009, 2009 International Conference on Computational Intelligence and Security.

[16]  Leopold Bömer,et al.  Periodic complementary binary sequences , 1990, IEEE Trans. Inf. Theory.

[17]  Pingzhi Fan,et al.  SEQUENCE DESIGN FOR COMMUNICATIONS APPLICATIONS , 1996 .

[18]  K. Paterson,et al.  Golay Complementary Sequences , 2003 .

[19]  Keqin Feng,et al.  On Aperiodic and Periodic Complementary Binary Sequences , 1999, IEEE Trans. Inf. Theory.

[20]  Richard J. Turyn,et al.  Hadamard Matrices, Baumert-Hall Units, Four-Symbol Sequences, Pulse Compression, and Surface Wave Encodings , 1974, J. Comb. Theory A.

[21]  R. Sivaswamy Self-Clutter Cancellation and Ambiguity Properties of Subcomplementary Sequences , 1982, IEEE Transactions on Aerospace and Electronic Systems.

[22]  Dimitris A. Pados,et al.  New Bounds and Optimal Binary Signature Sets - Part I: Periodic Total Squared Correlation , 2011, IEEE Trans. Commun..

[23]  Hans D. Schotten,et al.  Odd-perfect, almost binary correlation sequences , 1995 .

[24]  Michael B. Pursley Introduction to Digital Communications , 2004 .

[25]  Kenneth G. Paterson,et al.  Generalized Reed-Muller codes and power control in OFDM modulation , 1998, IEEE Trans. Inf. Theory.

[26]  Dimitris A. Pados,et al.  New Bounds and Optimal Binary Signature Sets - Part II: Aperiodic Total Squared Correlation , 2011, IEEE Transactions on Communications.