Relation fullerene-PAH-soot in laser pyrolysis: FTIR investigations

Laser pyrolysis of a hydrocarbon-based mixture is a continuous method for the synthesis of soot-containing fullerene. In this synthesis process, the mechanism of fullerene formation and soot is the radical mechanism of the PAH formation. In the flames producing both fullerenes and soot, exactly forming carbon cages require particular types of reaction sequences. The fullerene concentrations are strongly correlated with those of PAHs in the flame. The equilibrium soot-PAHs-fullerene is dependent on experimental parameters. FTIR spectra of soot extracts and exhaust gases are discussed in the frame of this dependence.

[1]  J. Tatlow,et al.  Advances in Fluorine Chemistry , 1966, Nature.

[2]  N. Herlin‐Boime,et al.  Carbon nanoparticles from laser pyrolysis , 2002 .

[3]  S. Bourcier,et al.  Laser synthesis of fullerenes from benzene-oxygen mixtures , 1996 .

[4]  J. Rouzaud,et al.  Nanoparticles produced by Laser Pyrolysis of hydrocarbons: analogy with carbon cosmic dust , 1998 .

[5]  S. Wiberley,et al.  Introduction to infrared and Raman spectroscopy , 1965 .

[6]  R C Stevens,et al.  Synthesis of Linear Acetylenic Carbon: The "sp" Carbon Allotrope , 1995, Science.

[7]  Stephen E. Stein,et al.  Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene , 1985 .

[8]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[9]  F. Wudl,et al.  The Higher Fullerenes: Isolation and Characterization of C76, C84, C90, C94, and C70O, an Oxide of D5h-C70 , 1991, Science.

[10]  Robert Schlögl,et al.  Spectral properties of carbon black , 1999 .

[11]  N. Herlin‐Boime,et al.  Effect of the C/O ratio on the C60 and C70 formation rates in soot synthesised by laser pyrolysis of benzene-based mixtures , 2001 .

[12]  N. Herlin‐Boime,et al.  Residence time effect on fullerene yield in butadiene based laser pyrolysis flame , 2003 .

[13]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[14]  J. Nagy,et al.  Effect of HBr, HCl and Cl2 on fullerene formation in benzene/oxygen/argon flames , 1996 .

[15]  Nílson Kunioshi,et al.  Computational study on the formation of five-membered rings in pah through reaction with O2 , 2002 .

[16]  M. Johnson,et al.  Fullerenes C60 and C70 in flames , 1991, Nature.

[17]  Jack B. Howard,et al.  Generation of higher fullerenes in flames , 1997 .

[18]  W. Whitten,et al.  Soot-free synthesis of C60 , 2003 .

[19]  M. Dresselhaus,et al.  Fullerene Chemistry and Electrochemistry , 1996 .

[20]  F. Rohmund,et al.  CO2-laser-driven production of carbon clusters and fullerenes from the gas phase , 1993 .

[21]  Z. Iqbal Structure, Properties and Applications of Nanostructured Carbon Architectures , 2001 .

[22]  N. Herlin‐Boime,et al.  Optical properties of synthetic carbon nanoparticles as model of cosmic dust. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[23]  T. Baum,et al.  Fullerenes and their ions in hydrocarbon flames , 1994 .

[24]  J. Howard,et al.  Thermodynamic limitations for fullerene formation in flames , 1996 .