Slip on shallow-dipping normal faults

Figure 1. Horizontal effective stress (σ3 – P), normalized to overburden (ρgz) as a function of fault dip for frictional failure, after Abers (2001). Coeffi cients of friction µ vary with line color (legend); solid lines show the case of hydrostatic pore pressure (λ = P/ρgz = 0.4) and dotted lines show near-lithostatic case (λ = 0.9). Faults can only slip for effective horizontal stress greater than the tensile strength, T, of the overlying rock, otherwise the hanging wall will fail by hydrofracture.

[1]  P. Huchon,et al.  Active continental extension in the western Woodlark basin: A synthesis of Leg 180 results , 2001 .

[2]  A. Kopf,et al.  Isotopic evidence (B, C, O) of deep fluid processes in fault rocks from the active Woodlark Basin detachment zone , 2003 .

[3]  B. Wernicke Low-angle normal faults and seismicity: A review , 1995 .

[4]  Robert E. Holdsworth,et al.  Development of interconnected talc networks and weakening of continental low-angle normal faults , 2009 .

[5]  G. Abers Evidence for seismogenic normal faults at shallow dips in continental rifts , 2001, Geological Society, London, Special Publications.

[6]  Carolyn Z. Mutter,et al.  Shallow dips of normal faults during rapid extension: Earthquakes in the Woodlark‐D'Entrecasteaux rift system, Papua New Guinea , 1997 .

[7]  N. Voulgaris,et al.  Microseismicity and faulting geometry in the Gulf of Corinth (Greece) , 2000 .

[8]  S. Hreinsdóttir,et al.  Active aseismic creep on the Alto Tiberina low-angle normal fault, Italy , 2009 .

[9]  E. M. Anderson The dynamics of faulting , 1905, Transactions of the Edinburgh Geological Society.

[10]  C. Scholz The Mechanics of Earthquakes and Faulting , 1990 .

[11]  C. R. Longwell Low‐angle normal faults in the basin‐and‐range province , 1945 .

[12]  Giusy Lavecchia,et al.  Architecture and seismotectonics of a regional low‐angle normal fault zone in central Italy , 2000 .

[13]  F. Scherbaum,et al.  Seismic slip on a low angle normal fault in the Gulf of Corinth: Evidence from high‐resolution cluster analysis of microearthquakes , 1996 .

[14]  J. C. Jaeger,et al.  Fundamentals of rock mechanics , 1969 .

[15]  C. Collettini,et al.  Architecture and mechanics of an active low‐angle normal fault: Alto Tiberina Fault, northern Apennines, Italy , 2007 .

[16]  J. Jackson,et al.  Normal faulting in the upper continental crust: observations from regions of active extension , 1989 .

[17]  J. Bull,et al.  Active faulting within the offshore western Gulf of Corinth, Greece: implications for models of continental rift deformation , 2005 .

[18]  R. Sibson,et al.  Normal faults, normal friction? , 2001 .

[19]  G. Axen Mechanics of Low-Angle Normal Faults , 2003 .

[20]  D. Lockner,et al.  Talc friction in the temperature range 25°–400 °C: relevance for fault-zone weakening , 2008 .

[21]  Enzo Boschi,et al.  A 'new generation' earthquake catalogue , 2000 .

[22]  Jonathan M. Bull,et al.  Evolution of the offshore western Gulf of Corinth , 2008 .

[23]  A. Deschamps,et al.  Active deformation of the Corinth rift, Greece: Results from repeated Global Positioning System surveys between 1990 and 1995 , 2000 .

[24]  Gianluca Valensise,et al.  Catalogue of Strong Italian Earthquakes from 461 B.C. to 1997 (Appendix to volume 43 N° 4, 2000) , 2000 .

[25]  N. Christie‐Blick,et al.  Is the Sevier Desert reflection of west-central Utah a normal fault? , 1994 .

[26]  B. Wernicke Low-angle normal faults in the Basin and Range Province: nappe tectonics in an extending orogen , 1981, Nature.

[27]  Pierre Briole,et al.  Seismicity, deformation and seismic hazard in the western rift of Corinth: New insights from the Corinth Rift Laboratory (CRL) , 2006 .