Space of C2-smooth geometrically continuous isogeometric functions on two-patch geometries

Abstract The space of C 2 -smooth geometrically continuous isogeometric functions on bilinearly parameterized two-patch domains is considered. The investigation of the dimension of the spaces of biquintic and bisixtic C 2 -smooth geometrically continuous isogeometric functions on such domains is presented. In addition, C 2 -smooth isogeometric functions are constructed to be used for performing L 2 -approximation and for solving triharmonic equation on different two-patch geometries. The numerical results indicate optimal approximation order.

[1]  Peter Betsch,et al.  Isogeometric analysis and domain decomposition methods , 2012 .

[2]  Mario Kapl,et al.  Isogeometric analysis with geometrically continuous functions on planar multi-patch geometries , 2017 .

[3]  Mario Kapl,et al.  Isogeometric analysis with geometrically continuous functions on two-patch geometries , 2015, Comput. Math. Appl..

[4]  Vinh Phu Nguyen,et al.  Nitsche’s method for two and three dimensional NURBS patch coupling , 2013, 1308.0802.

[5]  Sven Klinkel,et al.  The weak substitution method – an application of the mortar method for patch coupling in NURBS‐based isogeometric analysis , 2015 .

[6]  Joe D. Warren,et al.  Geometric continuity , 1991, Comput. Aided Geom. Des..

[7]  Alfio Quarteroni,et al.  MATHICSE Technical Report : Isogeometric analysis of high order partial differential equations on surfaces , 2015 .

[8]  Jörg Peters,et al.  Generalizing bicubic splines for modeling and IGA with irregular layout , 2016, Comput. Aided Des..

[9]  Giancarlo Sangalli,et al.  Analysis-suitable G1 multi-patch parametrizations for C1 isogeometric spaces , 2016, Comput. Aided Geom. Des..

[10]  Michael A. Scott,et al.  Isogeometric spline forests , 2014 .

[11]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[12]  Ulrich Langer,et al.  Dual-Primal Isogeometric Tearing and Interconnecting Solvers for large-scale systems of multipatch continuous Galerkin IgA equations , 2015, 1511.07183.

[13]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[14]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[15]  Giancarlo Sangalli,et al.  Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.

[16]  Jörg Peters,et al.  Matched Gk-constructions always yield Ck-continuous isogeometric elements , 2015, Comput. Aided Geom. Des..

[17]  Barbara Wohlmuth,et al.  Isogeometric mortar methods , 2014, 1407.8313.

[18]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[19]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[20]  A. Bruaset A survey of preconditioned iterative methods , 1995 .

[21]  Bert Jüttler,et al.  Adaptively refined multi-patch B-splines with enhanced smoothness , 2016, Appl. Math. Comput..

[22]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[23]  Thomas J. R. Hughes,et al.  Isogeometric Analysis for Topology Optimization with a Phase Field Model , 2012 .

[24]  Xesús Nogueira,et al.  An unconditionally energy-stable method for the phase field crystal equation , 2012 .

[25]  Larry L. Schumaker,et al.  Spline Functions on Triangulations: Triangulations and Quadrangulations , 2007 .

[26]  Alfio Quarteroni,et al.  Isogeometric Analysis and error estimates for high order partial differential equations in Fluid Dynamics , 2014 .

[27]  Roland Wüchner,et al.  A Nitsche‐type formulation and comparison of the most common domain decomposition methods in isogeometric analysis , 2014 .

[28]  Angelos Mantzaflaris,et al.  Multipatch Discontinuous Galerkin Isogeometric Analysis , 2015 .

[29]  Futao Zhang,et al.  Discontinuous Galerkin Methods for Isogeometric Analysis for Elliptic Equations on Surfaces , 2014 .

[30]  Alfio Quarteroni,et al.  Isogeometric Analysis for second order Partial Differential Equations on surfaces , 2015 .

[31]  Bert Jüttler,et al.  IETI – Isogeometric Tearing and Interconnecting , 2012, Computer methods in applied mechanics and engineering.

[32]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[33]  Jörg Peters,et al.  Refinable C1 spline elements for irregular quad layout , 2016, Comput. Aided Geom. Des..

[34]  Jörg Peters,et al.  A Comparative Study of Several Classical, Discrete Differential and Isogeometric Methods for Solving Poisson's Equation on the Disk , 2014, Axioms.

[35]  J. A. Gregory Geometric continuity , 1989 .

[36]  Jörg Peters,et al.  C1 finite elements on non-tensor-product 2d and 3d manifolds , 2016, Appl. Math. Comput..