Sentiment Analysis on Twitter Data for Portuguese Language

This work presents an study on Sentiment Analysis on Twitter data for the Portuguese language. It evaluates the impact of different preprocessing techniques, Portuguese polarity lexicons and negation models showing low impact of preprocessing and negation modelling in classification of tweets.

[1]  Virgílio A. F. Almeida,et al.  From bias to opinion: a transfer-learning approach to real-time sentiment analysis , 2011, KDD.

[2]  Wagner Meira,et al.  Effective sentiment stream analysis with self-augmenting training and demand-driven projection , 2011, SIGIR.

[3]  Xuanjing Huang,et al.  Phrase Dependency Parsing for Opinion Mining , 2009, EMNLP.

[4]  David A. Shamma,et al.  Characterizing debate performance via aggregated twitter sentiment , 2010, CHI.

[5]  Brendan T. O'Connor,et al.  Part-of-Speech Tagging for Twitter: Annotation, Features, and Experiments , 2010, ACL.

[6]  Luís Sarmento,et al.  Automatic Expansion of a Social Judgment Lexicon for Sentiment Analysis , 2010 .

[7]  Ellen Riloff,et al.  Exploiting Subjectivity Classification to Improve Information Extraction , 2005, AAAI.

[8]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[9]  Bo Pang,et al.  A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts , 2004, ACL.

[10]  Nicholas Asher,et al.  Appraisal of Opinion Expressions in Discourse , 2009 .

[11]  Timothy Baldwin,et al.  Lexical Normalisation of Short Text Messages: Makn Sens a #twitter , 2011, ACL.

[12]  Gregory Grefenstette,et al.  Coupling Niche Browsers and Affect Analysis for an Opinion Mining Application , 2004, RIAO.

[13]  Scott A. Schwenter The pragmatics of negation in Brazilian Portuguese , 2005 .

[14]  Bernard J. Jansen,et al.  Twitter power: Tweets as electronic word of mouth , 2009 .

[15]  M. de Rijke,et al.  UvA-DARE ( Digital Academic Repository ) Using WordNet to measure semantic orientations of adjectives , 2004 .

[16]  Claire Cardie,et al.  Learning with Compositional Semantics as Structural Inference for Subsentential Sentiment Analysis , 2008, EMNLP.

[17]  Scott A. Golder,et al.  Diurnal and Seasonal Mood Vary with Work, Sleep, and Daylength Across Diverse Cultures , 2011 .

[18]  Janyce Wiebe,et al.  RECOGNIZING STRONG AND WEAK OPINION CLAUSES , 2006, Comput. Intell..

[19]  Mirella Lapata,et al.  Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, EMNLP 2009, 6-7 August 2009, Singapore, A meeting of SIGDAT, a Special Interest Group of the ACL , 2009, EMNLP.

[20]  Lei Zhang,et al.  Entity discovery and assignment for opinion mining applications , 2009, KDD.

[21]  Johanna D. Moore,et al.  Twitter Sentiment Analysis: The Good the Bad and the OMG! , 2011, ICWSM.

[22]  Ari Rappoport,et al.  Enhanced Sentiment Learning Using Twitter Hashtags and Smileys , 2010, COLING.

[23]  Renata Vieira,et al.  Construction of a Portuguese Opinion Lexicon from multiple resources , 2011, STIL.

[24]  Patrick Paroubek,et al.  Twitter as a Corpus for Sentiment Analysis and Opinion Mining , 2010, LREC.

[25]  Dietrich Klakow,et al.  A survey on the role of negation in sentiment analysis , 2010, NeSp-NLP@ACL.