Global Navigation of Assistant Robots using Partially Observable Markov Decision Processes

[1]  Wolfram Burgard,et al.  Integrating Topological and Metric Maps for Mobile Robot Navigation: A Statistical Approach , 1998, AAAI/IAAI.

[2]  D. Fox,et al.  Towards Personal Service Robots for the Elderly , 1999 .

[3]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[4]  Francesco Zanichelli Topological Maps and Robust Localization for Autonomous Navigation , 1999, IJCAI 1999.

[5]  Geoffrey J. Gordon,et al.  Finding Approximate POMDP solutions Through Belief Compression , 2011, J. Artif. Intell. Res..

[6]  Ronald A. Howard,et al.  Dynamic Programming and Markov Processes , 1960 .

[7]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[8]  Satoru Hayamizu,et al.  Combining probabilistic map and dialog for robust life-long office navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[9]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[10]  Illah R. Nourbakhsh,et al.  DERVISH - An Office-Navigating Robot , 1995, AI Mag..

[11]  Kurt Konolige,et al.  The saphira architecture for autonomous mobile robots , 1998 .

[12]  Joelle Pineau,et al.  Point-based value iteration: An anytime algorithm for POMDPs , 2003, IJCAI.

[13]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[14]  John N. Tsitsiklis,et al.  The Complexity of Markov Decision Processes , 1987, Math. Oper. Res..

[15]  Luis Miguel Bergasa,et al.  A Human–Robot Cooperative Learning System for Easy Installation of Assistant Robots in New Working Environments , 2004, J. Intell. Robotic Syst..

[16]  Joelle Pineau,et al.  An integrated approach to hierarchy and abstraction for pomdps , 2002 .

[17]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .

[18]  François Charpillet,et al.  Robot Localization by Stochastic Vision Based Device , 2000 .

[19]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.

[20]  Joelle Pineau,et al.  Experiences with a mobile robotic guide for the elderly , 2002, AAAI/IAAI.

[21]  BurgardWolfram,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998 .

[22]  W. Lovejoy A survey of algorithmic methods for partially observed Markov decision processes , 1991 .

[23]  Wolfram Burgard,et al.  Using EM to Learn 3D Models of Indoor Environments with Mobile Robots , 2001, ICML.

[24]  Reid G. Simmons,et al.  Unsupervised learning of probabilistic models for robot navigation , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[25]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[26]  Sridhar Mahadevan,et al.  Approximate planning with hierarchical partially observable Markov decision process models for robot navigation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[27]  Anthony R. Cassandra,et al.  Optimal Policies for Partially Observable Markov Decision Processes , 1994 .