Low-Complexity Iterative Algorithms for (Discrete) Compressed Sensing

We consider iterative (`turbo') algorithms for compressed sensing. First, a unified exposition of the different approaches available in the literature is given, thereby enlightening the general principles and main differences. In particular we discuss i) the estimation step (matched filter vs. optimum MMSE estimator), ii) the unbiasing operation (implicitly or explicitly done and equivalent to the calculation of extrinsic information), and iii) thresholding vs. the calculation of soft values. Based on these insights we propose a low-complexity but well-performing variant utilizing a Krylov space approximation of the optimum linear MMSE estimator. The derivations are valid for any probability density of the signal vector. However, numerical results are shown for the discrete case. The novel algorithms shows very good performance and even slightly faster convergence compared to approximative message passing.

[1]  Andrea Montanari,et al.  Message passing algorithms for compressed sensing: I. motivation and construction , 2009, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[2]  Robert F. H. Fischer,et al.  Adapting Compressed Sensing Algorithms to Discrete Sparse Signals , 2014, WSA.

[3]  Joachim Hagenauer,et al.  The turbo principle-tutorial introduction and state of the art , 1997 .

[4]  Robert F. H. Fischer,et al.  Inflated Lattice Precoding, Bias Compensation, and the Uplink/Downlink Duality: The Connection , 2007, IEEE Communications Letters.

[5]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[6]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[7]  Donald L. Schilling,et al.  Multistage linear receivers for DS-CDMA systems , 1996, Int. J. Wirel. Inf. Networks.

[8]  Xiaojun Yuan,et al.  Turbo Compressed Sensing with Partial DFT Sensing Matrix , 2014, IEEE Signal Processing Letters.

[9]  Andrew C. Singer,et al.  Turbo Equalization: An Overview , 2011, IEEE Transactions on Information Theory.

[10]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[11]  Robert F. H. Fischer,et al.  Unveiling bias compensation in turbo-based algorithms for (discrete) compressed sensing , 2017, 2017 25th European Signal Processing Conference (EUSIPCO).

[12]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[13]  Defeng Huang,et al.  A Concise Representation for the Soft-in Soft-out LMMSE Detector , 2011, IEEE Communications Letters.

[14]  T. Blumensath,et al.  Iterative Thresholding for Sparse Approximations , 2008 .

[15]  G. David Forney,et al.  On the role of MMSE estimation in approaching the information-theoretic limits of linear Gaussian channels: Shannon meets Wiener , 2004, ArXiv.

[16]  John M. Cioffi,et al.  MMSE decision-feedback equalizers and coding. I. Equalization results , 1995, IEEE Trans. Commun..

[17]  Guido K. E. Dietl Linear Estimation and Detection in Krylov Subspaces , 2007 .

[18]  F. Tarkoy MMSE-optimal feedback and its applications , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[19]  Robert F. H. Fischer,et al.  Enhanced iterative hard thresholding for the estimation of discrete-valued sparse signals , 2016, 2016 24th European Signal Processing Conference (EUSIPCO).

[20]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, ISIT.

[21]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, 2010 IEEE International Symposium on Information Theory.

[22]  I. Daubechies,et al.  Accelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints , 2007, 0706.4297.

[23]  Robert F. H. Fischer MMSE DFE for high-rate MIMO transmission over channels with ISI , 2004 .

[24]  Robert F. H. Fischer,et al.  Soft-feedback OMP for the recovery of discrete-valued sparse signals , 2015, 2015 23rd European Signal Processing Conference (EUSIPCO).

[25]  Robert F. H. Fischer,et al.  Algorithms for the Iterative Estimation of Discrete-Valued Sparse Vectors , 2016, ArXiv.

[26]  F. Jondral,et al.  Rapidly converging polynomial expansion multiuser detector with low complexity for CDMA systems , 2002 .

[27]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[28]  Xiaojun Yuan,et al.  On the Performance of Turbo Signal Recovery with Partial DFT Sensing Matrices , 2015, IEEE Signal Processing Letters.