The primary structure of the rat guanylyl cyclase A/atrial natriuretic peptide receptor gene.

[1]  G. Schultz,et al.  The primary structure of the larger subunit of soluble guanylyl cyclase from bovine lung Homology between the two subunits of the enzyme , 1990, FEBS letters.

[2]  D. Baltimore,et al.  Transcriptional activation by Sp1 as directed through TATA or initiator: specific requirement for mammalian transcription factor IID. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M. Cantin,et al.  Ring-deleted analogs of atrial natriuretic factor inhibit adenylate cyclase/cAMP system. Possible coupling of clearance atrial natriuretic factor receptors to adenylate cyclase/cAMP signal transduction system. , 1990, The Journal of biological chemistry.

[4]  R. Renkawitz,et al.  Repetitive sequence involvement in the duplication and divergence of mouse lysozyme genes. , 1990, The EMBO journal.

[5]  Sujay K. Singh,et al.  The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family , 1989, Cell.

[6]  Michael Chinkers,et al.  The protein kinase domain of the ANP receptor is required for signaling. , 1989, Science.

[7]  E. Chen,et al.  Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases , 1989, Nature.

[8]  C. Slaughter,et al.  Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. , 1989, Science.

[9]  S. Meloche,et al.  Topographical characterization of the domain structure of the bovine adrenal atrial natriuretic factor R1 receptor. , 1989, Biochemistry.

[10]  D. Goeddel,et al.  Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. , 1989, The EMBO journal.

[11]  D. Garbers,et al.  The membrane form of guanylate cyclase. Homology with a subunit of the cytoplasmic form of the enzyme. , 1989, The Journal of biological chemistry.

[12]  F. Murad,et al.  Stimulatory effects of atrial natriuretic factor on phosphoinositide hydrolysis in cultured bovine aortic smooth muscle cells. , 1989, Biochimica et biophysica acta.

[13]  D. Goeddel,et al.  A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor , 1989, Nature.

[14]  T. Inagami,et al.  Atrial natriuretic factor. , 1989, The Journal of biological chemistry.

[15]  D. Garbers,et al.  Molecular basis of fertilization. , 1989, Annual review of biochemistry.

[16]  S. Seino,et al.  Structure of the human insulin receptor gene and characterization of its promoter. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[17]  F. Murad,et al.  Molecular cloning of a cDNA coding for 70 kilodalton subunit of soluble guanylate cyclase from rat lung. , 1988, Biochemical and biophysical research communications.

[18]  E. Böhme,et al.  The primary structure of the 70 kDa subunit of bovine soluble guanylate cyclase , 1988, FEBS letters.

[19]  T. Kunkel,et al.  Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. , 1988, Biochemistry.

[20]  D. Goeddel,et al.  Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases , 1988, Nature.

[21]  Nicolas Mermod,et al.  A family of human CCAAT-box-binding proteins active in transcription and DNA replication: cloning and expression of multiple cDNAs , 1988, Nature.

[22]  J. Lewicki,et al.  Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cDNA clones. , 1988, The Journal of biological chemistry.

[23]  M. Uhler,et al.  Characterization of genomic clones coding for the C alpha and C beta subunits of mouse cAMP-dependent protein kinase. , 1988, The Journal of biological chemistry.

[24]  J. Lewicki,et al.  Physiological role of silent receptors of atrial natriuretic factor. , 1987, Science.

[25]  N. Glaichenhaus,et al.  A role for ID repetitive sequences in growth- and transformation-dependent regulation of gene expression in rat fibroblasts , 1987, Cell.

[26]  C. Benoist,et al.  Conserved major histocompatibility complex class II boxes--X and Y--are transcriptional control elements and specifically bind nuclear proteins. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Cantin,et al.  Pertussis toxin attenuates atrial natriuretic factor-mediated inhibition of adenylate cyclase. Involvement of inhibitory guanine nucleotide regulatory protein. , 1987, The Journal of biological chemistry.

[28]  Y. Hayashizaki,et al.  Revision of consensus sequence of human Alu repeats--a review. , 1987, Gene.

[29]  L. Dangott,et al.  Covalent coupling of a resact analogue to guanylate cyclase. , 1986, The Journal of biological chemistry.

[30]  Robert Tjian,et al.  Transcriptional selectivity of viral genes in mammalian cells , 1986, Cell.

[31]  M. Shibuya,et al.  Human c-ros-1 gene homologous to the v-ros sequence of UR2 sarcoma virus encodes for a transmembrane receptorlike molecule , 1986, Molecular and cellular biology.

[32]  K. Semba,et al.  A v-erbB-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[33]  H. Kung,et al.  Human cellular src gene: nucleotide sequence and derived amino acid sequence of the region coding for the carboxy-terminal two-thirds of pp60c-src , 1985, Molecular and cellular biology.

[34]  E. Ullu,et al.  Alu sequences are processed 7SL RNA genes , 1984, Nature.

[35]  J. Martial,et al.  A method for isolation of intact, translationally active ribonucleic acid. , 1983, DNA.

[36]  S. McKnight,et al.  Transcriptional control signals of a eukaryotic protein-coding gene. , 1982, Science.

[37]  J. Collins Instability of palindromic DNA in Escherichia coli. , 1981, Cold Spring Harbor symposia on quantitative biology.

[38]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[39]  F. Murad,et al.  Increased particulate and decreased soluble guanylate cyclase activity in regenerating liver, fetal liver, and hepatoma. , 1975, Proceedings of the National Academy of Sciences of the United States of America.