Nonlinear Hinfinity-control of nonsmooth time-varying systems with application to friction mechanical manipulators

Nonlinear H"~-controller synthesis is developed for nonsmooth time-varying systems via measurement feedback. A local H"~-controller is derived by means of a certain perturbation of the differential Riccati equations, appearing in solving the H"~-control problem for the linearized system, when these unperturbed equations have bounded positive semidefinite solutions. Stabilizability and detectability properties of the control system are thus ensured by the existence of the proper solutions of the unperturbed differential Riccati equations, and hence the proposed synthesis procedure obviates an extra (formidable in the nonlinear case) work on verification of these properties. Theoretical results are applied to a position tracking control problem and, particularly, a regulation problem for mechanical systems with friction. Performance issues of the nonlinear H"~-tracking controller are illustrated in a simulation study made for a two degrees-of-freedom robot manipulator.

[1]  Myung Jin Chung,et al.  Robust Control of Robot Manipulators , 1993 .

[2]  Bor-Sen Chen,et al.  Adaptive control in robotic systems with H∞ tracking performance , 1997, Autom..

[3]  Yury Orlov,et al.  Nonlinear H∞-control of time-varying systems: a unified distribution-based formalism for continuous and sampled-data measurement feedback design , 2001, IEEE Trans. Autom. Control..

[4]  Bor-Sen Chen,et al.  A nonlinear H∞ control design in robotic systems under parameter perturbation and external disturbance , 1994 .

[5]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[6]  A. Isidori,et al.  Disturbance attenuation and H/sub infinity /-control via measurement feedback in nonlinear systems , 1992 .

[7]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[8]  P. Khargonekar,et al.  H ∞ control of linear time-varying systems: a state-space approach , 1991 .

[9]  Leonardo Acho,et al.  Non-linear measurement feedback H8-control of time-periodic systems with application to tracking control of robot manipulators , 2001 .

[10]  T. Basar,et al.  H∞-0ptimal Control and Related Minimax Design Problems: A Dynamic Game Approach , 1996, IEEE Trans. Autom. Control..

[11]  Romeo Ortega,et al.  Passivity-based Control of Euler-Lagrange Systems , 1998 .

[12]  J. Hauser,et al.  Nonlinear H ∞ control around periodic orbits , 1997 .

[13]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[14]  Ian Postlethwaite,et al.  Robust Nonlinear H∞/Adaptive Control of Robot Manipulator Motion , 1993 .

[15]  Patrizio Tomei Nonlinear H∞ disturbance attenuation for robots with flexible joints , 1995 .

[16]  M. de Mathelin,et al.  Robust control of robot manipulators: A survey , 1999 .

[17]  Leonardo Acho,et al.  Nonlinear H/sub /spl infin//-control of time-varying systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[18]  Henk Nijmeijer,et al.  Global regulation of robots using only position measurements , 1993 .

[19]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[20]  W. M. Grimm,et al.  On L/sub 2/- and L/sub infinity /-stability approaches for the robust control of robot manipulators , 1988 .

[21]  Louis Weinberg,et al.  Network Analysis and Synthesis , 1962 .

[22]  P. Dahl Solid Friction Damping of Mechanical Vibrations , 1976 .

[23]  A. Schaft L/sub 2/-gain analysis of nonlinear systems and nonlinear state-feedback H/sub infinity / control , 1992 .

[24]  Carlos Canudas de Wit,et al.  Friction Models and Friction Compensation , 1998, Eur. J. Control.