Test Martingales, Bayes Factors and p-Values

A nonnegative martingale with initial value equal to one measures evidence against a probabilistic hypothesis. The inverse of its value at some stopping time can be interpreted as a Bayes factor. If we exaggerate the ev- idence by considering the largest value attained so far by such a martingale, the exaggeration will be limited, and there are systematic ways to eliminate it. The inverse of the exaggerated value at some stopping time can be in- terpreted as a p-value. We give a simple characterization of all increasing functions that eliminate the exaggeration.

[1]  I. Todhunter,et al.  A history of the mathematical theory of probability from the time of Pascal to that of Laplace / by I. Todhunter. , 1865 .

[2]  K. Pearson On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is Such that it Can be Reasonably Supposed to have Arisen from Random Sampling , 1900 .

[3]  E. S. Pearson,et al.  On the Problem of the Most Efficient Tests of Statistical Hypotheses , 1933 .

[4]  Jean-Luc Ville Étude critique de la notion de collectif , 1939 .

[5]  F. J. Anscombe,et al.  Fixed-Sample-Size Analysis of Sequential Observations , 1954 .

[6]  P. Levy Théorie de l'addition des variables aléatoires , 1955 .

[7]  Cedric A. B. Smith,et al.  Consistency in Statistical Inference and Decision , 1961 .

[8]  Guy Johnson,et al.  Class $D$ supermartingales , 1963 .

[9]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[10]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[11]  Kiyosi Itô,et al.  Transformation of Markov processes by multiplicative functionals , 1965 .

[12]  P. Meyer Probability and potentials , 1966 .

[13]  Per Martin-Löf,et al.  The Definition of Random Sequences , 1966, Inf. Control..

[14]  A. Dempster Elements of Continuous Multivariate Analysis , 1969 .

[15]  Claus-Peter Schnorr,et al.  Zufälligkeit und Wahrscheinlichkeit - Eine algorithmische Begründung der Wahrscheinlichkeitstheorie , 1971, Lecture Notes in Mathematics.

[16]  C. Schnorr Zufälligkeit und Wahrscheinlichkeit , 1971 .

[17]  E. Lehmann,et al.  Nonparametrics: Statistical Methods Based on Ranks , 1976 .

[18]  A. P. Dawid,et al.  Present position and potential developments: some personal views , 1984 .

[19]  P. Laplace Memoir on the Probability of the Causes of Events , 1986 .

[20]  S. Stigler Laplace's 1774 Memoir on Inverse Probability , 1986 .

[21]  V. Vovk The Law of the Iterated Logarithm for Random Kolmogorov, or Chaotic, Sequences , 1988 .

[22]  V. Vovk A logic of probability, with application to the foundations of statistics , 1993 .

[23]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[24]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[25]  Paul M. B. Vitányi,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 1993, Graduate Texts in Computer Science.

[26]  T. Apostol An Elementary View of Euler's Summation Formula , 1999 .

[27]  M. J. Bayarri,et al.  Calibration of ρ Values for Testing Precise Null Hypotheses , 2001 .

[28]  R. Fisher Statistical methods for research workers , 1927, Protoplasma.

[29]  W. Gasarch,et al.  The Book Review Column 1 Coverage Untyped Systems Simple Types Recursive Types Higher-order Systems General Impression 3 Organization, and Contents of the Book , 2022 .

[30]  David R. Cox,et al.  PRINCIPLES OF STATISTICAL INFERENCE , 2017 .

[31]  G. Shafer From Cournot’s Principle to Market Efficiency , 2007 .

[32]  C. Hipp,et al.  On the normal approximation to symmetric binomial distributions@@@On the normal approximation to symmetric binomial distributions , 2007 .

[33]  E. Wagenmakers A practical solution to the pervasive problems ofp values , 2007, Psychonomic bulletin & review.

[34]  Peter Medvegyev,et al.  Stochastic Integration Theory , 2007 .

[35]  Per Martin-Löf,et al.  The Literature on von Mises' Kollektivs Revisited , 2008 .

[36]  Jie W Weiss,et al.  Bayesian Statistical Inference for Psychological Research , 2008 .

[37]  Christian Hipp,et al.  On the Normal Approximation to Symmetric Binomial Distributions , 2008 .

[38]  Karl Pearson F.R.S. X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling , 2009 .

[39]  R. Gill,et al.  History of applications of martingales in survival analysis. , 2010, 1003.0188.

[40]  T. Lai Martingales in Sequential Analysis and Time Series, 1945-1985 ∗ , 2009 .

[41]  G. Shafer,et al.  On the history of martingales in the study of randomness , 2009 .

[42]  A. Dawid,et al.  Insuring against loss of evidence in game-theoretic probability , 2010, 1005.1811.

[43]  C. Dellacherie,et al.  Probabilities and Potential B: Theory of Martingales , 2012 .