Numerical study of the influence of tungsten recrystallization on the divertor component lifetime

[1]  Zhu Xiaoyong,et al.  Recrystallization behavior of pure tungsten hot-rolled with high accumulated strain during annealing at 1250 °C–1350 °C , 2021 .

[2]  J. van Dommelen,et al.  Recrystallization behaviour of high-flux hydrogen plasma exposed tungsten , 2021 .

[3]  G. Kermouche,et al.  Recrystallization at high temperature of two tungsten materials complying with the ITER specifications , 2020, Journal of Nuclear Materials.

[4]  G. Kermouche,et al.  A high power laser facility to conduct annealing tests at high temperature. , 2020, The Review of scientific instruments.

[5]  G. Kermouche,et al.  Inverse identification of tungsten static recrystallization kinetics under high thermal flux , 2019, Fusion Engineering and Design.

[6]  W. Pantleon,et al.  Recovery and recrystallization kinetics of differently rolled, thin tungsten plates in the temperature range from 1325 °C to 1400 °C , 2019, Nuclear Materials and Energy.

[7]  G. Kermouche,et al.  Impact of tungsten recrystallization on ITER-like components for lifetime estimation , 2019, Fusion Engineering and Design.

[8]  H. Greuner,et al.  Manufacturing and testing of ITER-like divertor plasma facing mock-ups for DEMO , 2018, Fusion Engineering and Design.

[9]  S. Ayadi,et al.  Adaptation of hydrogen transport models at the polycrystal scale and application to the U-bend test , 2018 .

[10]  M. Merola,et al.  Fracture modes of ITER tungsten divertor monoblock under stationary thermal loads , 2017 .

[11]  M. Merola,et al.  Self-castellation of tungsten monoblock under high heat flux loading and impact of material properties , 2017 .

[12]  A. Hasegawa,et al.  Degradation of tungsten monoblock divertor under cyclic high heat flux loading , 2017 .

[13]  M. Merola,et al.  Use of Tungsten Material for the ITER Divertor , 2016 .

[14]  T. Oda Thermodynamic model for grain boundary effects on hydrogen solubility, diffusivity and permeability in poly-crystalline tungsten , 2016 .

[15]  J. You,et al.  Interpretation of the deep cracking phenomenon of tungsten monoblock targets observed in high-heat-flux fatigue tests at 20 MW/m2 , 2015 .

[16]  F. Escourbiac,et al.  Progress of ITER full tungsten divertor technology qualification in Japan , 2015 .

[17]  J. Linke,et al.  Characterization of ITER tungsten qualification mock-ups exposed to high cyclic thermal loads , 2015 .

[18]  S. Iyengar,et al.  Fatigue behavior of rolled and forged tungsten at 25 degrees, 280 degrees and 480 degrees C , 2015 .

[19]  M. Merola,et al.  Status of technology R&D for the ITER tungsten divertor monoblock , 2015 .

[20]  Francois Saint-Antonin Essais de relaxation isotherme , 1997, Étude et propriétés des métaux.

[21]  G. Luo,et al.  Thermal stability of warm-rolled tungsten , 2015 .

[22]  Jean-Michel Bergheau,et al.  Thermomechanical Industrial Processes: Modeling and Numerical Simulation , 2014 .

[23]  B. Riccardi,et al.  Qualification and Post-Mortem Characterization of Tungsten Mock-ups Exposed to Cyclic High Heat Flux Loading , 2013 .

[24]  Frederic Escourbiac,et al.  The WEST programme: Minimizing technology and operational risks of a full actively cooled tungsten divertor on ITER , 2013 .

[25]  Anton Möslang,et al.  Tungsten foil laminate for structural divertor applications - Tensile test properties of tungsten foil , 2013 .

[26]  A. Loarte,et al.  Preliminary results of the experimental study of PFCs exposure to ELMs-like transient loads followed by high heat flux thermal fatigue , 2011 .

[27]  B. Riccardi,et al.  High heat flux testing of mock-ups for a full tungsten ITER divertor , 2011 .

[28]  Jean-Michel Bergheau,et al.  Intgration numrique de lois de comportement lastoviscoplastique endommageable et applications , 1998 .

[29]  J. Leblond Mathematical modelling of transformation plasticity in steels II: Coupling with strain hardening phenomena , 1989 .

[30]  A. Simon,et al.  Mathematical model coupling phase transformation and temperature evolution during quenching of steels , 1985 .

[31]  M. Ulrickson,et al.  Tensile and low-cycle fatigue measurements on cross-rolled tungsten at 1505 K , 1984 .

[32]  Jean-Baptiste Leblond,et al.  A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size , 1984 .

[33]  R. Schmunk,et al.  Tensile and low-cycle fatigue measurements on cross-rolled tungsten☆ , 1981 .

[34]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .