An exponentially expanding mesh ideally suited to the fast and efficient simulation of diffusion processes at microdisc electrodes. 3. Application to voltammetry

In the first paper in this series we derived an exponentially expanding mesh designed specifically to give a fast, efficient solution to the problem of simulation of diffusion processes at microdisc electrodes to a pre-determined level of accuracy. In this paper we make use of this mesh to consider the problem of linear sweep voltammetry and show that for the simulated values of the peak current for a fully reversible reaction we can obtain agreement with previous analytic results to within 0.25% at all parameter values of interest. We go on to consider irreversible and quasi-reversible systems, and demonstrate good qualitative agreement with previously described numerical and analytical results. We again make use of the FIRM and the ADI finite difference methods, and discuss when each of these methods is most appropriate.

[1]  A. Szabó,et al.  Hopscotch: An algorithm for the numerical solution of electrochemical problems , 1984 .

[2]  A. Szabó,et al.  Chronoamperometric current at finite disk electrodes , 1982 .

[3]  Christopher G. Phillips,et al.  The long-time transient of two- and three-dimensional diffusion in microelectrode chronoamperometry , 1992 .

[4]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[5]  M. Fleischmann,et al.  The behavior of microdisk and microring electrodes. Mass transport to the disk in the unsteady state: Chronopotentiometry , 1988 .

[6]  Elise de Doncker,et al.  D01 Chapter-Numerical Algorithms Group, in samenwerking met de andere D01-contributors. 1) NAG Fortran Mini Manual, Mark 8, D01 18p., , 1981 .

[7]  K. B. Oldham,et al.  Comparison of voltammetric steady states at hemispherical and disc microelectrodes , 1988 .

[8]  Richard G. Compton,et al.  A General Method for Electrochemical Simulations. 1. Formulation of the Strategy for Two-Dimensional Simulations , 1997 .

[9]  Hubert H. Girault,et al.  Digital simulation of charge transfer to an ultramicrodisc interface , 1990 .

[10]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[11]  Gene H. Golub,et al.  Matrix computations , 1983 .

[12]  Mark W. Verbrugge,et al.  Transient diffusion and migration to a disk electrode , 1992 .

[13]  J. Heinze,et al.  Electrochemistry at Ultramicroelectrodes—Simulation of Heterogeneous and Homogeneous Kinetics by an Improved ADI—Technique , 1986 .

[14]  Jürgen Heinze,et al.  Diffusion processes at finite (micro) disk electrodes solved by digital simulation , 1981 .

[15]  R. M. Wightman,et al.  Microdisk electrodes: Part I. Digital simulation with a conformal map , 1989 .

[16]  M. Verbrugge,et al.  An Integral‐Transform Formulation for the Reaction Distribution on a Stationary‐Disk Electrode Below the Limiting Current , 1990 .

[17]  Stephen W. Feldberg,et al.  The Richtmyer modification of the fully implicit finite difference algorithm for simulations of electrochemical problems , 1994 .

[18]  C. Hahn,et al.  The development of new microelectrode gas sensors: an odyssey. Part 2. O2 and CO2 reduction at membrane-covered gold microdisc electrodes , 1995 .

[19]  Koichi Aoki,et al.  Formulation of the diffusion-controlled current at very small stationary disk electrodes , 1984 .

[20]  Keith B. Oldham,et al.  Edge effects in semiinfinite diffusion , 1981 .

[21]  K. Morton,et al.  Numerical Solution of Partial Differential Equations , 1995 .

[22]  Dieter Britz,et al.  Digital Simulation in Electrochemistry , 1981 .

[23]  Stephen W. Feldberg,et al.  Examination of the behavior of the fully implicit finite-difference algorithm with the Richtmyer modification: behavior with an exponentially expanding time grid , 1995 .

[24]  Carl E. Pearson,et al.  Impulsive end condition for diffusion equation , 1965 .

[25]  J. Heinze,et al.  Implicit calculation of boundary values in digital simulation applied to several types of electrochemical experiment , 1988 .

[26]  Keith B. Oldham,et al.  Theory of electrochemical processes at an inlaid disc microelectrode under steady-state conditions , 1988 .

[27]  Manfred Rudolph,et al.  Digital simulations with the fast implicit finite difference (FIFD) algorithm: Part II. An improved treatment of electrochemical mechanisms with second-order reactions , 1992 .

[28]  David J. Gavaghan,et al.  How accurate is your two-dimensional numerical simulation? Part 1. An introduction , 1997 .

[29]  J GavaghanD,et al.  微小ディスク電極における拡散過程の迅速な効率のよいシミュレーションに理想的にふさわしい指数的に展開するメッシュ 3 ボルタンメトリーへの適用 , 1998 .

[30]  David J. Gavaghan,et al.  An exponentially expanding mesh ideally suited to the fast and efficient simulation of diffusion processes at microdisc electrodes. 1. Derivation of the mesh , 1998 .

[31]  C. Hahn,et al.  Numerical simulation of the time-dependent current to membrane-covered oxygen sensors. Part IV. Experimental verification that the switch-on transient is non-Cottrellian for microdisc electrodes , 1996 .

[32]  Manfred Rudolph,et al.  A fast implicit finite difference algorithm for the digital simulation of electrochemical processes , 1991 .

[33]  Ole Østerby,et al.  Some numerical investigations of the stability of electrochemical digital simulation, particularly as affected by first-order homogeneous reactions , 1994 .

[34]  Richard G. Compton,et al.  A General Method for Electrochemical Simulations. 2. Application to the Simulation of Steady-State Currents at Microdisk Electrodes: Homogeneous and Heterogeneous Kinetics , 1997 .

[35]  David J. Gavaghan,et al.  Correction of boundary singularities in numerical simulation of time-dependent diffusion processes at unshielded disc electrodes , 1990 .

[36]  David J. Gavaghan,et al.  Two-dimensional implementation of the finite element method with singularity correction for diffusion limited current at an unshielded disc electrode , 1995 .

[37]  K. Aoki,et al.  Linear sweep voltammetry at very small stationary disk electrodes , 1984 .