Structural isomserism in gold nanoparticles revealed by X-ray crystallography

[1]  M. Gordon,et al.  Isomers of Au 8 , 2017 .

[2]  R. Whetten,et al.  Optical Spectra of the Special Au144 Gold-Cluster Compounds: Sensitivity to Structure and Symmetry , 2015 .

[3]  R. Jin,et al.  Cu(2+) induced formation of Au44(SC2H4Ph)32 and its high catalytic activity for the reduction of 4-nitrophenol at low temperature. , 2015, Chemical communications.

[4]  Jinlong Yang,et al.  Adding two active silver atoms on Au₂₅ nanoparticle. , 2015, Nano letters.

[5]  T. Pradeep,et al.  Simple and efficient separation of atomically precise noble metal clusters. , 2014, Analytical chemistry.

[6]  N. Zheng,et al.  High-yield synthesis and crystal structure of a green Au₃₀ cluster co-capped by thiolate and sulfide. , 2014, Chemical communications.

[7]  Stefan Goedecker,et al.  Isomerism and structural fluxionality in the Au26 and Au26(-) nanoclusters. , 2014, ACS nano.

[8]  Zhentao Luo,et al.  Solvent Controls the Formation of Au29(SR)20 Nanoclusters in the CO‐Reduction Method , 2014 .

[9]  R. Jin,et al.  Crystal structure and electronic properties of a thiolate-protected Au24 nanocluster. , 2014, Nanoscale.

[10]  R. Whetten,et al.  Information on quantum states pervades the visible spectrum of the ubiquitous Au144(SR)60 gold nanocluster , 2014, Nature Communications.

[11]  Jianping Xie,et al.  Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au(25) nanoclusters with atomic precision. , 2014, Angewandte Chemie.

[12]  Peng Li,et al.  Crystal structure of selenolate-protected Au24(SeR)20 nanocluster. , 2014, Journal of the American Chemical Society.

[13]  S. Dai,et al.  Structure of Au15(SR)13 and its implication for the origin of the nucleus in thiolated gold nanoclusters. , 2013, Journal of the American Chemical Society.

[14]  T. Goodson,et al.  An ultrafast look at Au nanoclusters. , 2013, Accounts of chemical research.

[15]  S. J. Ambrose,et al.  Stable and recyclable Au25 clusters for the reduction of 4-nitrophenol. , 2013, Chemical communications.

[16]  U. Landman,et al.  Total structure and electronic properties of the gold nanocrystal Au36(SR)24. , 2012, Angewandte Chemie.

[17]  T. Bürgi,et al.  Au40(SR)24 cluster as a chiral dimer of 8-electron superatoms: structure and optical properties. , 2012, Journal of the American Chemical Society.

[18]  H. Häkkinen,et al.  The gold-sulfur interface at the nanoscale. , 2012, Nature chemistry.

[19]  T. Bürgi,et al.  First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands , 2012, Nature Communications.

[20]  Wei Chen,et al.  Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. , 2012, Chemical Society reviews.

[21]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[22]  R. Jin,et al.  Atomically precise gold nanocrystal molecules with surface plasmon resonance , 2012, Proceedings of the National Academy of Sciences.

[23]  S. Batsanov,et al.  Structure and Optical Properties , 2012 .

[24]  Zhi Wang,et al.  Real-space observation of prolate monolayer-protected Au(38) clusters using aberration-corrected scanning transmission electron microscopy. , 2011, Small.

[25]  R. Jin,et al.  Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters. , 2011, Journal of the American Chemical Society.

[26]  R. Jin,et al.  Total structure determination of thiolate-protected Au38 nanoparticles. , 2010, Journal of the American Chemical Society.

[27]  O. Lopez-Acevedo,et al.  Chirality and electronic structure of the thiolate-protected Au38 nanocluster. , 2010, Journal of the American Chemical Society.

[28]  O. Lopez-Acevedo,et al.  Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. , 2010, Nature chemistry.

[29]  Paul Mulvaney,et al.  Gold Nanoparticles: Past, Present, and Future , 2010 .

[30]  Xiao Cheng Zeng,et al.  Isomer identification and resolution in small gold clusters. , 2010, The Journal of chemical physics.

[31]  R. Jin,et al.  Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. , 2009, ACS nano.

[32]  R. Murray,et al.  Electrospray ionization mass spectrometry of intrinsically cationized nanoparticles, [Au(144/146)(SC(11)H(22)N(CH(2)CH(3))(3)(+))(x)(S(CH(2))(5)CH(3))(y)](x+). , 2009, Journal of the American Chemical Society.

[33]  R. Jin,et al.  Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60. , 2009, Nano letters.

[34]  R. Murray,et al.  Gold nanoparticles: past, present, and future. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[35]  Zhikun Wu,et al.  One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters , 2009 .

[36]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. III. , 2008, Chemical Society reviews.

[37]  Britta Redlich,et al.  Structures of Neutral Au7, Au19, and Au20 Clusters in the Gas Phase , 2008, Science.

[38]  X. Zeng,et al.  Structural prediction of thiolate-protected Au38: a face-fused bi-icosahedral Au core. , 2008, Journal of the American Chemical Society.

[39]  R. Jin,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[40]  M. L. Tiago,et al.  In search of a structural model for a thiolate-protected Au38 cluster , 2008, 0804.0018.

[41]  R. Whetten,et al.  On the structure of thiolate-protected Au25. , 2008, Journal of the American Chemical Society.

[42]  R. Murray,et al.  Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. , 2008, Journal of the American Chemical Society.

[43]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[44]  Mark S Gordon,et al.  Isomers of Au8. , 2007, The Journal of chemical physics.

[45]  Simon J L Billinge,et al.  The Problem with Determining Atomic Structure at the Nanoscale , 2007, Science.

[46]  Hannu Häkkinen,et al.  Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings. , 2006, The journal of physical chemistry. B.

[47]  G. Scuseria,et al.  Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. , 2005, The Journal of chemical physics.

[48]  R. Kornberg,et al.  Thiolate ligands for synthesis of water-soluble gold clusters. , 2005, Journal of the American Chemical Society.

[49]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. , 2004, Angewandte Chemie.

[50]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[51]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[52]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[53]  Acknowledgements , 1992, Experimental Gerontology.