The Finitary Andrews-Curtis Conjecture

The well known Andrews-Curtis Conjecture [2] is still open. In this paper, we establish its finite version by describing precisely the connected components of the Andrews-Curtis graphs of finite groups. This finite version has independent importance for computational group theory. It also resolves a question asked in [5] and shows that a computation in finite groups cannot lead to a counterexample to the classical conjecture, as suggested in [5].

[1]  Ronald L. Graham,et al.  The graph of generating sets of an abelian group , 1999 .

[2]  Scott H. Murray,et al.  Variants of Product Replacement , 2002 .

[3]  Extended Nielsen transformations and triviality of a group , 1984 .

[4]  Проблема сопряженности в одной группе автоморфизмов бесконечного дерева@@@Conjugacy problem in an automorphism group of an infinite tree , 1998 .

[5]  Yuriy Leonov Conjugacy problem in a class of 2-groups , 1998 .

[6]  Michiel Hazewinkel,et al.  Handbook of algebra , 1995 .

[7]  A. Borovik Centralisers of Involutions in Black Box Groups , 2001, math/0110233.

[8]  S. Akbulut,et al.  A potential smooth counterexample in dimension 4 to the Poincare conjecture, the Schoenflies conjecture, and the Andrews-Curtis conjecture , 1985 .

[9]  R. Grigorchuk Degrees of Growth of Finitely Generated Groups, and the Theory of Invariant Means , 1985 .

[10]  B. H. Neumann,et al.  Zwei Klassen charakteristischer Untergruppen und ihre Faktorgruppen. Erhard Schmidt zum 75. Geburtstag. B. H. und Neumann, Charakteristische Untergruppen , 1950 .

[11]  R. I. Grigorchuk,et al.  Just Infinite Branch Groups , 2000 .

[12]  Проблема сопряженности в одном классе 2-групп@@@Conjugacy problem in a class of 2-groups , 1998 .

[13]  Scott H. Murray,et al.  Generating random elements of a finite group , 1995 .

[14]  Dan Segal,et al.  New Horizons in pro-p Groups , 2000 .

[15]  B. H. Neumann,et al.  Zwei Klassen charakteristischer Untergruppen und ihre Faktorgruppen , 1950 .

[16]  Alexandre V. Borovik,et al.  The Andrews-Curtis Conjecture and Black Box Groups , 2003, Int. J. Algebra Comput..

[17]  W. Kantor,et al.  Groups and Computation II , 1997 .

[18]  William M. Kantor,et al.  Black Box Classical Groups , 2001 .

[19]  Igor Pak,et al.  The product replacement algorithm and Kazhdan’s property (T) , 2000 .

[20]  J. J. Andrews,et al.  Free groups and handlebodies , 1965 .

[21]  Robert R. Alfano,et al.  Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine: 19-21 June 1991, the City College of New York , 1992 .

[22]  R. I. Grigorchuk Branch groups , 2005, math/0510294.