A general divergence criterion for prior selection
暂无分享,去创建一个
[1] R. Mukerjee,et al. Probability Matching Priors: Higher Order Asymptotics , 2004 .
[2] Bertrand Clarke,et al. Asymptotics of the Expected Posterior , 1999 .
[3] J. Hartigan. The maximum likelihood prior , 1998 .
[4] S. Ghosal,et al. Reference priors in multiparameter nonregular cases , 1997 .
[5] Subhashis Ghosal,et al. Asymptotic Expansions of Posterior Distributions in Nonregular Cases , 1997 .
[6] Ghosal Subhashis,et al. EXPANSION OF BAYES RISK FOR ENTROPY LOSS AND REFERENCE PRIOR IN NONREGULAR CASES , 1997 .
[7] L. Wasserman,et al. The Selection of Prior Distributions by Formal Rules , 1996 .
[8] P. Laplace. Théorie analytique des probabilités , 1995 .
[9] J. Q. Smith,et al. 1. Bayesian Statistics 4 , 1993 .
[10] A. Barron,et al. Jeffreys' prior is asymptotically least favorable under entropy risk , 1994 .
[11] Andrew R. Barron,et al. Information-theoretic asymptotics of Bayes methods , 1990, IEEE Trans. Inf. Theory.
[12] Timothy R. C. Read,et al. Multinomial goodness-of-fit tests , 1984 .
[13] S. Amari. Differential Geometry of Curved Exponential Families-Curvatures and Information Loss , 1982 .
[14] J. Bernardo. Reference Posterior Distributions for Bayesian Inference , 1979 .
[15] Edwin Hewitt,et al. Real And Abstract Analysis , 1967 .
[16] Edwin Hewitt,et al. Real and Abstract Analysis: A Modern Treatment of the Theory of Functions of a Real Variable , 1965 .
[17] D. Lindley. On a Measure of the Information Provided by an Experiment , 1956 .
[18] A. Bhattacharyya. On a measure of divergence between two statistical populations defined by their probability distributions , 1943 .
[19] E. Hellinger,et al. Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. , 1909 .
[20] H. Jeffreys. The Theory of Probability , 1896 .