A distance-labelling problem for hypercubes

Let i"1>=i"2>=i"3>=1 be integers. An L(i"1,i"2,i"3)-labelling of a graph G=(V,E) is a mapping @f:V->{0,1,2,...} such that |@f(u)[email protected](v)|>=i"t for any u,[email protected]?V with d(u,v)=t, t=1,2,3, where d(u,v) is the distance in G between u and v. The integer @f(v) is called the label assigned to v under @f, and the difference between the largest and the smallest labels is called the span of @f. The problem of finding the minimum span, @l"i"""1","i"""2","i"""3(G), over all L(i"1,i"2,i"3)-labellings of G arose from channel assignment in cellular communication systems, and the related problem of finding the minimum number of labels used in an L(i"1,i"2,i"3)-labelling was originated from recent studies on the scalability of optical networks. In this paper we study the L(i"1,i"2,i"3)-labelling problem for hypercubes Q"d (d>=3) and obtain upper and lower bounds on @l"i"""1","i"""2","i"""3(Q"d) for any (i"1,i"2,i"3).

[1]  Jerrold R. Griggs,et al.  Labelling Graphs with a Condition at Distance 2 , 1992, SIAM J. Discret. Math..

[2]  Patric R. J. Östergård On a hypercube coloring problem , 2004, J. Comb. Theory, Ser. A.

[3]  G. Chang,et al.  Labeling graphs with a condition at distance two , 2005 .

[4]  Peng-Jun Wan,et al.  Near-Optimal Conflict-Free Channel Set Assignments for an Optical Cluster-Based Hypercube Network , 1997, J. Comb. Optim..

[5]  Florica Kramer,et al.  A survey on the distance-colouring of graphs , 2008, Discret. Math..

[6]  Panos M. Pardalos,et al.  A coloring problem on the n-cube , 2000, Discret. Appl. Math..

[7]  Helmut Alt,et al.  Computational Discrete Mathematics , 2001, Lecture Notes in Computer Science.

[8]  Dragan Marusic,et al.  Hamiltonian circuits in Cayley graphs , 1983, Discret. Math..

[9]  Haya Freedman,et al.  Introduction to finite fields and their applications (revised edition) , by Rudolf Lidl and Harald Niederreiter. Pp. 416. £29.95. 1994. ISBN 0-521-46094-8 (Cambridge University Press) , 1995, The Mathematical Gazette.

[10]  John P. Georges,et al.  Labeling Products of Complete Graphs with a Condition at Distance Two , 2001, SIAM J. Discret. Math..

[11]  David Erwin,et al.  On labeling the vertices of products of complete graphs with distance constraints , 2005 .

[12]  Dragan Marui Hamiltonian circuits in Cayley graphs , 1983 .

[13]  John P. Georges,et al.  On the lambda-Number of Qn and Related Graphs , 1995, SIAM J. Discret. Math..

[14]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: List of Symbols , 1986 .

[15]  J. V. D. Heuvel,et al.  Graph labeling and radio channel assignment , 1998 .

[16]  W. K. Hale Frequency assignment: Theory and applications , 1980, Proceedings of the IEEE.

[17]  Günter M. Ziegler Coloring Hamming Graphs, Optimal Binary Codes, and the 0/1-Borsuk Problem in Low Dimensions , 2001, Computational Discrete Mathematics.

[18]  Sanming Zhou,et al.  Distance-two labellings of Hamming graphs , 2009, Discret. Appl. Math..

[19]  Sanming Zhou,et al.  Labelling Cayley Graphs on Abelian Groups , 2005, SIAM J. Discret. Math..

[20]  Tiziana Calamoneri,et al.  The L(h, k)-Labelling Problem: A Survey and Annotated Bibliography , 2006, Comput. J..

[21]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .

[22]  Sanming Zhou A channel assignment problem for optical networks modelled by Cayley graphs , 2004, Theor. Comput. Sci..

[23]  Sanming Zhou Distance Labelling Problems for Hypercubes and Hamming Graphs - A Survey , 2007, Electron. Notes Discret. Math..

[24]  Ding-Zhu Du,et al.  New bounds on a hypercube coloring problem , 2002, Inf. Process. Lett..