Chiral recognition of alanine across modified carbon electrodes with 3,4-dihydroxyphenylalanine

[1]  J. Switzer,et al.  Enhancing enantioselectivity of electrodeposited CuO films by chiral etching. , 2007, Journal of the American Chemical Society.

[2]  T. Chapman,et al.  Glassy carbon electrodes modified with composites of starburst-PAMAM dendrimers containing metal nanoparticles for amperometric detection of dopamine in urine. , 2007, Talanta.

[3]  T. Osaka,et al.  Enantioselectivity of redox reaction of DOPA at the gold electrode modified with a self-assembled monolayer of homocysteine. , 2006, Journal of the American Chemical Society.

[4]  A. Martin,et al.  Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation , 2006 .

[5]  Hewen Liu,et al.  Effects of Oxidation by Hydrogen Peroxide on the Structures of Multiwalled Carbon Nanotubes , 2006 .

[6]  Lei Zhang,et al.  Attachment of gold nanoparticles to glassy carbon electrode and its application for the voltammetric resolution of ascorbic acid and dopamine , 2005 .

[7]  David Avnir,et al.  Chiral electrochemical recognition by very thin molecularly imprinted sol-gel films. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[8]  Lei Zhang,et al.  Electrochemical behavior of a covalently modified glassy carbon electrode with aspartic acid and its use for voltammetric differentiation of dopamine and ascorbic acid , 2005, Analytical and bioanalytical chemistry.

[9]  A. Tripković,et al.  The effect of electrochemically treated glassy carbon on the activity of supported Pt catalyst in methanol oxidation , 2004 .

[10]  Edward J. Wood,et al.  Biochemistry (3rd ed.) , 2004 .

[11]  L. Wan,et al.  Adsorption and coordination of tartaric acid enantiomers on Cu(111) in aqueous solution. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[12]  P. Poizot,et al.  Enantiospecific electrodeposition of a chiral catalyst , 2003, Nature.

[13]  V. C. Ferreira,et al.  Enantiomeric electro-oxidation of d- and l-glucose on chiral gold single crystal surfaces , 2003 .

[14]  Lei Zhang,et al.  Covalent Modification of Glassy Carbon Electrodes with β-Alanine for Voltammetric Separation of Dopamine and Ascorbic Acid , 2001, Fresenius' journal of analytical chemistry.

[15]  M. Sever,et al.  Synthesis of peptides containing DOPA (3,4-dihydroxyphenylalanine) , 2001 .

[16]  G. Attard Electrochemical Studies of Enantioselectivity at Chiral Metal Surfaces , 2001 .

[17]  Kazunori Katayama,et al.  Surface Improvement of Glassy Carbon Electrode Anodized in Triethylene Glycol and Its Application to Electrochemical HPLC Analysis of Protein-Containing Samples , 2000 .

[18]  M. McDermott,et al.  Probing morphological and compositional variations of anodized carbon electrodes with tapping-mode scanning force microscopy. , 1999, Analytical chemistry.

[19]  S. Blais,et al.  TEMPERATURE EFFECTS IN THE ENANTIOMERIC ELECTRO-OXIDATION OF D- AND L-GLUCOSE ON PT643S , 1999 .

[20]  R. McCreery,et al.  Control of Electron Transfer Kinetics at Glassy Carbon Electrodes by Specific Surface Modification , 1996 .

[21]  Yong Yang,et al.  In situ FTIR characterization of the electrooxidation of glassy carbon electrodes , 1995 .

[22]  M. Porter,et al.  Electrochemical oxidation of amine-containing compounds. A route to the surface modification of glassy carbon electrodes , 1994 .

[23]  J. Pinson,et al.  Electrochemical Bonding of Amines to Carbon Fiber Surfaces Toward Improved Carbon‐Epoxy Composites , 1990 .

[24]  J. Y. Gui,et al.  Studies of L-DOPA and related compounds adsorbed from aqueous solutions at platinum(100) and platinum(111): electron energy-loss spectroscopy, Auger spectroscopy, and electrochemistry , 1988 .

[25]  R. Rosset,et al.  Étude electrochimique de l'oxydation de la dihydroxy-3,4 phénylalanine (Dopa) , 1974 .

[26]  Hardcover,et al.  Carbon: Electrochemical and Physicochemical Properties , 1988 .

[27]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .