A clarification of misconceptions, myths and desired status of artificial intelligence

The field artificial intelligence (AI) has been founded over 65 years ago. Starting with great hopes and ambitious goals the field progressed though various stages of popularity and received recently a revival in the form of deep neural networks. Some problems of AI are that so far neither 'intelligence' nor the goals of AI are formally defined causing confusion when comparing AI to other fields. In this paper, we present a perspective on the desired and current status of AI in relation to machine learning and statistics and clarify common misconceptions and myths. Our discussion is intended to uncurtain the veil of vagueness surrounding AI to see its true countenance.

[1]  Raymond Kurzweil,et al.  Age of intelligent machines , 1990 .

[2]  R. Kurzweil,et al.  The Singularity Is Near: When Humans Transcend Biology , 2006 .

[3]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[4]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[5]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[6]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[7]  Gordon K. Smyth,et al.  Generalized Linear Models With Examples in R , 2018 .

[8]  Arash Bahrammirzaee,et al.  A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems , 2010, Neural Computing and Applications.

[9]  D.,et al.  Regression Models and Life-Tables , 2022 .

[10]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[11]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[12]  D. Kleinbaum,et al.  Survival Analysis: A Self-Learning Text. , 1996 .

[13]  Matthias Dehmer,et al.  Defining Data Science by a Data-Driven Quantification of the Community , 2018, Mach. Learn. Knowl. Extr..

[14]  Gerhard Lakemeyer,et al.  Exploring artificial intelligence in the new millennium , 2003 .

[15]  J. Searle Mind, Language, And Society: Philosophy In The Real World , 1998 .

[16]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[17]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[18]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[19]  Jean-Charles Pomerol,et al.  Artificial intelligence and human decision making , 1997 .

[20]  Raymond C. Kurzweil,et al.  The Singularity Is Near , 2018, The Infinite Desire for Growth.

[21]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[22]  J. W. Humberston Classical mechanics , 1980, Nature.

[23]  R A Brooks,et al.  New Approaches to Robotics , 1991, Science.

[24]  Kristin L. Sainani,et al.  Logistic Regression , 2014, PM & R : the journal of injury, function, and rehabilitation.

[25]  Alessio Farcomeni,et al.  A review of modern multiple hypothesis testing, with particular attention to the false discovery proportion , 2008, Statistical methods in medical research.

[26]  Matthias Dehmer,et al.  Large-Scale Simultaneous Inference with Hypothesis Testing: Multiple Testing Procedures in Practice , 2019, Mach. Learn. Knowl. Extr..

[27]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[28]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[29]  Ulrich W. Eisenecker,et al.  AI: The Tumultuous History of the Search for Artificial Intelligence , 1995 .

[30]  Shane Legg,et al.  Universal Intelligence: A Definition of Machine Intelligence , 2007, Minds and Machines.

[31]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[32]  H. Simon,et al.  Completer Science asEmp rical Inquiry: Symbols and Search , 1976 .

[33]  Maliha S. Nash,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 2001, Technometrics.

[34]  James Babcock,et al.  Artificial General Intelligence , 2016, Lecture Notes in Computer Science.

[35]  Frederick Hayes-Roth,et al.  Building expert systems , 1983, Advanced book program.

[36]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[37]  Pei Wang,et al.  Rigid Flexibility: The Logic of Intelligence , 2006 .

[38]  Marco Scutari,et al.  Learning Bayesian Networks with the bnlearn R Package , 2009, 0908.3817.

[39]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[40]  Matthias Dehmer,et al.  High-Dimensional LASSO-Based Computational Regression Models: Regularization, Shrinkage, and Selection , 2019, Mach. Learn. Knowl. Extr..

[41]  Isaac S Kohane,et al.  Artificial Intelligence in Healthcare , 2019, Artificial Intelligence and Machine Learning for Business for Non-Engineers.

[42]  B. Frieden,et al.  Physics from Fisher Information: A Unification , 1998 .

[43]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[44]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[45]  Patrick Henry Winston,et al.  Artificial intelligence: an mit perspective , 1979 .

[46]  John McCarthy,et al.  A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955 , 2006, AI Mag..

[47]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[48]  Malik Beshir Malik,et al.  Applied Linear Regression , 2005, Technometrics.

[49]  H. Simon,et al.  The shape of automation for men and management , 1965 .

[50]  Masoud Yazdani,et al.  Building an expert system , 1989 .

[51]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[52]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[53]  Peter Stone,et al.  Reinforcement learning , 2019, Scholarpedia.

[54]  Matthias Dehmer,et al.  Understanding Statistical Hypothesis Testing: The Logic of Statistical Inference , 2019, Mach. Learn. Knowl. Extr..

[55]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[56]  Edward A. Feigenbaum,et al.  Artificial intelligence research , 1963, IEEE Trans. Inf. Theory.