Aggregation of Variables and Applications to Population Dynamics

1 IRD UR Geodes, Centre IRD de l’Ile de France, 32, Av. Henri Varagnat, 93143 Bondy cedex, France pierre.auger@bondy.ird.fr 2 Departamento de Matematicas, Universidad de Alcala, 28871 Alcala de Henares, Madrid, Spain rafael.bravo@uah.es 3 Laboratoire de Microbiologie, Geochimie et d’Ecologie Marines, UMR 6117, Centre d’Oceanologie de Marseille (OSU), Universite de la Mediterranee, Case 901, Campus de Luminy, 13288 Marseille Cedex 9, France Jean-Christophe.Poggiale@univmed.fr 4 Departamento de Matematicas, E.T.S.I. Industriales, U.P.M., c/ Jose Gutierrez Abascal, 2, 28006 Madrid, Spain esanchez@etsii.upm.es 5 IXXI, ENS Lyon, 46 allee d’Italie, 69364 Lyon cedex 07, France tri.nguyen-huu@ens-lyon.fr

[1]  Peter W. Bates,et al.  Existence and Persistence of Invariant Manifolds for Semiflows in Banach Space , 1998 .

[2]  Marten Scheffer,et al.  Seasonal dynamics of Daphnia and algae explained as a periodically forced predator-prey system , 1997 .

[3]  Pierre Auger,et al.  Time Scales in Density Dependent Discrete Models , 1997 .

[4]  P Auger,et al.  Emergence of population growth models: fast migration and slow growth. , 1996, Journal of theoretical biology.

[5]  É. Benoît Chasse au canard , 1980 .

[6]  P. Auger,et al.  Ecotoxicology and spatial modeling in population dynamics: An illustration with brown trout , 2003, Environmental toxicology and chemistry.

[7]  P Auger,et al.  Behavioral choices based on patch selection: a model using aggregation methods. , 1999, Mathematical biosciences.

[8]  Pierre Auger,et al.  Complex ecological models with simple dynamics: From individuals to populations , 1994 .

[9]  Eva Sánchez,et al.  Aggregation methods in population dynamics discrete models , 1998 .

[10]  R. de la Parra,et al.  Variables Aggregation in Time Varying Discrete Systems , 1998 .

[11]  Peter W. Bates,et al.  Invariant foliations near normally hyperbolic invariant manifolds for semiflows , 2000 .

[12]  P. Auger,et al.  Linear Discrete Population Models with Two Time Scales in Fast Changing Environments I: Autonomous Case , 2001, Acta biotheoretica.

[13]  J. Poggiale Lotka-Volterra's model and migrations: Breaking of the well-known center , 1998 .

[14]  N. Kryloff,et al.  Application of methods of nonlinear mechanics in the theory of stationary oscilations , 1935 .

[15]  J. Poggiale From behavioural to population level: Growth and competition , 1998 .

[16]  P. Auger,et al.  Effects of asymmetric dispersal and environmental gradients on the stability of host–parasitoid systems , 2005 .

[17]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[18]  P. Auger,et al.  Integrative biology: linking levels of organization. , 2003, Comptes rendus biologies.

[19]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[20]  P. Auger,et al.  Migration frequency and the persistence of host-parasitoid interactions. , 2003, Journal of theoretical biology.

[21]  Luis Sanz,et al.  The Reliability of Approximate Reduction Techniques in Population Models with Two Time Scales , 2002, Acta biotheoretica.

[22]  Bob W. Kooi,et al.  Aggregation methods in food chains , 1998 .

[23]  Christopher K. R. T. Jones,et al.  A Primer on the Exchange Lemma for Fast-Slow Systems , 2001 .

[24]  A discrete model with density dependent fast migration. , 1999, Mathematical biosciences.

[25]  Pierre Auger,et al.  Predator Migration Decisions, the Ideal Free Distribution, and Predator‐Prey Dynamics , 1999, The American Naturalist.

[26]  R. B. Parra,et al.  Approximate reduction of nonlinear discrete models with two time scales , 2008 .

[27]  J. Gaillard,et al.  Effect of aggressive behaviour on age-structured population dynamics , 2006 .

[28]  A model of an age-structured population in a multipatch environment , 1998 .

[29]  Bifurcation analysis of a predator-prey model with predators using hawk and dove tactics. , 2006, Journal of theoretical biology.

[30]  É. Benoît,et al.  Canards et enlacements , 1990 .

[31]  Predator-prey models in heterogeneous environment: Emergence of functional response , 1998 .

[32]  Luis Perez Sanz,et al.  Time scales in stochastic multiregional models , 2000 .

[33]  P. Auger,et al.  Annual spawning migrations in modelling brown trout population dynamics inside an arborescent river network , 2000 .

[34]  A model for an age-structured population with two time scales , 2000 .

[35]  Leah Edelstein-Keshet,et al.  Mathematical models in biology , 2005, Classics in applied mathematics.

[36]  P. Auger,et al.  Time scales in linear delayed differential equations , 2006 .

[37]  Michael Shub,et al.  The local theory of normally hyperbolic, invariant, compact manifolds , 1977 .

[38]  Pierre Auger,et al.  AGGREGATION METHODS IN DISCRETE MODELS , 1995 .

[39]  P. Auger,et al.  AGGREGATION, EMERGENCE AND IMMERGENCE IN HIERARCHICALLY ORGANIZED SYSTEMS , 1999 .

[40]  P. Auger,et al.  Dynamics of a fishery on two fishing zones with fish stock dependent migrations: aggregation and control , 2002 .

[41]  J. Carr Applications of Centre Manifold Theory , 1981 .

[42]  Pierre Auger,et al.  A PREY-PREDATOR MODEL IN A MULTI-PATCH ENVIRONMENT WITH DIFFERENT TIME SCALES , 1993 .

[43]  Pierre Auger,et al.  A density dependent model describing Salmo trutta population dynamics in an arborescent river network. Effects of dams and channelling , 1998 .

[44]  A. J. Lotka Elements of Physical Biology. , 1925, Nature.

[45]  Pierre Auger,et al.  FAST OSCILLATING MIGRATIONS IN A PREDATOR-PREY MODEL , 1996 .

[46]  A. J. Lotka UNDAMPED OSCILLATIONS DERIVED FROM THE LAW OF MASS ACTION. , 1920 .

[47]  Luis Sanz,et al.  Approximate reduction of multiregional models with environmental stochasticity. , 2007, Mathematical biosciences.

[48]  L. Sanz,et al.  TIME SCALES IN A NON-AUTONOMOUS LINEAR DISCRETE MODEL , 2001 .

[49]  Pierre Auger,et al.  Linear discrete models with different time scales , 1995 .

[50]  P Auger,et al.  Methods of aggregation of variables in population dynamics. , 2000, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[51]  S Rinaldi,et al.  Singular homoclinic bifurcations in tritrophic food chains. , 1998, Mathematical biosciences.

[52]  P. Auger,et al.  Effect of movement frequency on global host–parasitoid spatial dynamics with unstable local dynamics , 2006 .

[53]  Ovide Arino,et al.  A Singular Perturbation in an Age-Structured Population Model , 1999, SIAM J. Appl. Math..

[54]  P. Auger,et al.  USING AGGREGATION METHODS TO ASSESS TOXICANT EFFECTS ON POPULATION DYNAMICS IN SPATIAL SYSTEMS , 2002 .

[55]  P Auger,et al.  Fast game theory coupled to slow population dynamics: the case of domestic cat populations. , 1998, Mathematical biosciences.

[56]  P. Auger,et al.  Assessing the effect of habitat fragmentation on population dynamics: An implicit modelling approach , 2006 .

[57]  Pierre Auger,et al.  Aggregation and emergence in hierarchically organized systems: population dynamics , 1996 .

[58]  Kunimochi Sakamoto,et al.  Invariant manifolds in singular perturbation problems for ordinary differential equations , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[59]  Pierre Auger,et al.  EMERGING PROPERTIES IN POPULATION DYNAMICS WITH DIFFERENT TIME SCALES , 1995 .

[60]  Pierre Auger,et al.  Effect of predator density dependent dispersal of prey on stability of a predator-prey system. , 2007, Mathematical biosciences.

[61]  J. Callot,et al.  Chasse au canard , 1977 .

[62]  Robert M. May,et al.  The spatial dynamics of host-parasitoid systems , 1992 .

[63]  Yoh Iwasa,et al.  Aggregation in Model Ecosystems II. Approximate Aggregation , 1989 .

[64]  Pierre Auger Dynamics and thermodynamics in hierarchically organized systems : applications in physics, biology, and economics , 1989 .

[65]  R Bravo de la Parra,et al.  Variables aggregation in a time discrete linear model. , 1999, Mathematical biosciences.

[66]  Pierre Auger,et al.  Aggregation and emergence in systems of ordinary differential equations , 1998 .

[67]  P. Auger,et al.  Emergence of individual behaviour at the population level. Effects of density-dependent migration on population dynamics. , 2000, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[68]  P Flammarion,et al.  Do migratory or demographic disruptions rule the population impact of pollution in spatial networks? , 2003, Theoretical population biology.

[69]  Pierre Auger,et al.  Aggregation and emergence in ecological modelling: integration of ecological levels , 2000 .

[70]  Freddy Dumortier,et al.  Canard Cycles and Center Manifolds , 1996 .

[71]  P. Auger,et al.  Spatial synchrony in host-parasitoid models using aggregation of variables. , 2006, Mathematical biosciences.

[72]  Pierre Auger,et al.  Impact of spatial heterogeneity on a predator-prey system dynamics. , 2004, Comptes rendus biologies.

[73]  Sergio Rinaldi,et al.  Low- and high-frequency oscillations in three-dimensional food chain systems , 1992 .

[74]  R. Arditi,et al.  Emergence of donor control in patchy predator—prey systems , 1998 .

[75]  P. Auger,et al.  Perturbations of the classical Lotka-Volterra system by behavioral sequences , 1995 .

[76]  P. Holgate,et al.  Matrix Population Models. , 1990 .

[77]  Marten Scheffer,et al.  Implications of spatial heterogeneity for the paradox of enrichment , 1995 .

[78]  Y. Iwasa,et al.  Aggregation in model ecosystems. I. Perfect aggregation , 1987 .

[79]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[80]  A. Nicholson,et al.  Supplement: the Balance of Animal Populations , 1933 .

[81]  S. Wiggins Normally Hyperbolic Invariant Manifolds in Dynamical Systems , 1994 .

[82]  P. Auger,et al.  The stabilizability of a controlled system describing the dynamics of a fishery. , 2005, Comptes rendus biologies.

[83]  Pierre Auger,et al.  Hawk-dove game and competition dynamics , 1998 .

[84]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[85]  A. Nicholson,et al.  The Balance of Animal Populations.—Part I. , 1935 .

[86]  Pierre Auger,et al.  Macroscopic Dynamic Effects of Migrations in Patchy Predator-prey Systems , 1997 .

[87]  Influence of Individual Aggressiveness on the Dynamics of Competitive Populations , 1997, Acta biotheoretica.

[88]  P. Auger,et al.  A predator-prey model with predators using hawk and dove tactics. , 2002, Mathematical biosciences.

[89]  F. Dumortier,et al.  Geometric Singular Perturbation Theory Beyond Normal Hyperbolicity , 2001 .

[90]  P. Auger,et al.  Population Dynamics Modelling in an Hierarchical Arborescent River Network: An Attempt with Salmo trutta , 1998 .

[91]  G. Sell,et al.  Perturbations of normally hyperbolic manifolds with applications to the Navier-Stokes equations , 1999 .