0.8% Nyquist computational ghost imaging via non-experimental deep learning

Haotian Song, 2 Xiaoyu Nie, 3 Hairong Su, Hui Chen, Yu Zhou, Xingchen Zhao, Tao Peng, ∗ and Marlan O. Scully 6, 7 School of Physics, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China College of Physics & Astronomy, University of Manchester, Manchester M13 9PL, UK Texas A&M University, College Station, Texas, 77843, USA School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi’an Jiaotong University, Xi’an, 710049, China Baylor University, Waco, 76706, USA Princeton University, Princeton, NJ 08544, USA (Dated: August 18, 2021)

[1]  R. Boyd,et al.  "Two-Photon" coincidence imaging with a classical source. , 2002, Physical review letters.

[2]  Wen Chen,et al.  1000 fps computational ghost imaging using LED-based structured illumination. , 2018, Optics express.

[3]  L. Deng,et al.  The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web] , 2012, IEEE Signal Processing Magazine.

[4]  Shih,et al.  Optical imaging by means of two-photon quantum entanglement. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[5]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[6]  O. Katz,et al.  Compressive ghost imaging , 2009, 0905.0321.

[7]  O. Katz,et al.  Ghost imaging with a single detector , 2008, 0812.2633.

[8]  Marlan O. Scully,et al.  Noise-robust computational ghost imaging with pink noise speckle patterns , 2020, Physical Review A.

[9]  Justin K. Romberg,et al.  Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.

[10]  Qun Hao,et al.  DeepGhost: real-time computational ghost imaging via deep learning , 2020, Scientific Reports.

[11]  Jingang Zhong,et al.  Single-pixel imaging by means of Fourier spectrum acquisition , 2015, Nature Communications.

[12]  I. Dolbnya,et al.  X-ray computational ghost imaging with single-pixel detector. , 2019, Optics express.

[13]  J. Shapiro,et al.  Computational ghost imaging versus imaging laser radar for three-dimensional imaging , 2012, 1212.3253.

[14]  Xiang Zhai,et al.  Foveated ghost imaging based on deep learning , 2019 .

[15]  Wei Zhang,et al.  Object identification in computational ghost imaging based on deep learning , 2020, Applied Physics B.

[16]  Robert L. Cook,et al.  Stochastic sampling in computer graphics , 1988, TOGS.

[17]  Zibang Zhang,et al.  Hadamard single-pixel imaging versus Fourier single-pixel imaging. , 2017, Optics express.

[18]  Xianmin Zhang,et al.  Sub-Nyquist computational ghost imaging with deep learning. , 2020, Optics express.

[19]  Le Wang,et al.  Handwritten Digit Recognition based on Ghost Imaging with Deep Learning , 2020 .

[20]  Yide Wang,et al.  A residual-based deep learning approach for ghost imaging , 2020, Scientific Reports.

[21]  Hong Guo,et al.  Orthonormalization method in ghost imaging. , 2018, Optics express.

[22]  Takayuki Takahashi,et al.  Computational ghost imaging using deep learning , 2017, ArXiv.

[23]  Chen Yi,et al.  Compressive sensing ghost imaging based on image gradient , 2019, Optik.

[24]  Fei Wang,et al.  Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging. , 2019, Optics express.

[25]  David Shrekenhamer,et al.  Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator. , 2013, Optics express.

[26]  Wenlin Gong,et al.  The influence of sparsity property of images on ghost imaging with thermal light. , 2012, Optics letters.

[27]  Wen-Kai Yu,et al.  Super Sub-Nyquist Single-Pixel Imaging by Means of Cake-Cutting Hadamard Basis Sort , 2019, Sensors.

[28]  Miles J. Padgett,et al.  A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging , 2017, Scientific Reports.

[29]  Xianmin Zhang,et al.  Deep-learning denoising computational ghost imaging , 2020 .

[30]  M. Scully,et al.  Sub-Rayleigh second-order correlation imaging using spatially distributive colored noise speckle patterns. , 2021, Optics express.

[31]  Jinli Suo,et al.  Gerchberg-Saxton-like ghost imaging. , 2015, Optics express.

[32]  Jeffrey H. Shapiro,et al.  Computational ghost imaging , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[33]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Robert W. Boyd,et al.  Compressive Object Tracking using Entangled Photons , 2013 .

[35]  Guohai Situ,et al.  Deep-learning-based ghost imaging , 2017, Scientific Reports.

[36]  Shengmei Zhao,et al.  Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform , 2016 .

[37]  A. Gatti,et al.  Differential ghost imaging. , 2010, Physical review letters.

[38]  Ling-An Wu,et al.  Lensless ghost imaging with true thermal light. , 2009, Optics letters.

[39]  Alberto Tosi,et al.  Photon-sparse microscopy: Visible light imaging using infrared illumination , 2015 .

[40]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[41]  Zhuo Xu,et al.  Ghost Imaging Based on Deep Learning , 2018, Scientific Reports.