Coupled cluster energy derivatives. Analytic Hessian for the closed‐shell coupled cluster singles and doubles wave function: Theory and applications

Expressions for coupled cluster molecular energy derivatives up to third order are presented and the molecular gradient and Hessian are implemented in a computer code for the CCSD wave function. Sample calculations on water and hydrogen peroxide indicate that significant savings are obtained by calculating the Hessian analytically rather than by finite differences.

[1]  G. Scuseria,et al.  Equilibrium structures and vibrational frequencies for diatomic molecules. An assessment of the CCSDT-1 method, incorporating coupled-cluster single, double, and linearized triple excitations , 1988 .

[2]  G. Scuseria,et al.  Relative Energies of Silaethylene and Methylsilylene , 1988 .

[3]  Trygve Helgaker,et al.  Configuration-interaction energy derivatives in a fully variational formulation , 1989 .

[4]  Trygve Helgaker,et al.  Molecular Hessians for large‐scale MCSCF wave functions , 1986 .

[5]  Ian M. Mills,et al.  Anharmonic force constant calculations , 1972 .

[6]  Trygve Helgaker,et al.  Analytical Calculation of Geometrical Derivatives in Molecular Electronic Structure Theory , 1988 .

[7]  Laurence S. Rothman,et al.  Dipole moment of water from Stark measurements of H2O, HDO, and D2O , 1973 .

[8]  J. S. Binkley,et al.  Electron correlation theories and their application to the study of simple reaction potential surfaces , 1978 .

[9]  Poul Jørgensen,et al.  Geometrical derivatives of energy surfaces and molecular properties , 1986 .

[10]  W. D. Allen,et al.  The analytic evaluation of energy first derivatives for two‐configuration self‐consistent‐field configuration interaction (TCSCF‐CI) wave functions. Application to ozone and ethylene , 1987 .

[11]  Curtis L. Janssen,et al.  An efficient reformulation of the closed‐shell coupled cluster single and double excitation (CCSD) equations , 1988 .

[12]  R. L. Redington,et al.  Studies of Hydrogen Peroxide: The Infrared Spectrum and the Internal Rotation Problem , 1962 .

[13]  R. Bartlett,et al.  Analytic energy gradients for general coupled‐cluster methods and fourth‐order many‐body perturbation theory , 1986 .

[14]  R. Bartlett,et al.  Analytical gradient evaluation in coupled-cluster theory , 1985 .

[15]  Julia E. Rice,et al.  The closed‐shell coupled cluster single and double excitation (CCSD) model for the description of electron correlation. A comparison with configuration interaction (CISD) results , 1987 .

[16]  R. Bartlett,et al.  Analytical gradients for the coupled-cluster method† , 1984 .

[17]  T. Thirunamachandran,et al.  Molecular Quantum Electrodynamics , 1984 .

[18]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[19]  Henry F. Schaefer,et al.  Ordering of the O-O stretching vibrational frequencies in ozone , 1989 .

[20]  G. Scuseria,et al.  Analytic evaluation of energy gradients for the single, double and linearized triple excitation coupled-cluster CCSDT-1 wavefunction: Theory and applications , 1988 .

[21]  F. Coester,et al.  Short-range correlations in nuclear wave functions , 1960 .

[22]  R. Bartlett,et al.  A study of Be2 with many‐body perturbation theory and a coupled‐cluster method including triple excitations , 1984 .

[23]  Julia E. Rice,et al.  Analytic evaluation of energy gradients for the single and double excitation coupled cluster (CCSD) wave function: Theory and application , 1987 .

[24]  H. Schaefer,et al.  The analytic configuration interaction gradient method: Application to the cyclic and open isomers of the S3 molecule , 1986 .

[25]  Hans Ågren,et al.  MC SCF optimization using the direct, restricted step, second-order norm-extended optimization method , 1984 .

[26]  Henry F. Schaefer,et al.  On the evaluation of analytic energy derivatives for correlated wave functions , 1984 .

[27]  Peter Pulay,et al.  An efficient reformulation of the closed‐shell self‐consistent electron pair theory , 1984 .

[28]  Rodney J. Bartlett,et al.  Analytic energy derivatives in many‐body methods. I. First derivatives , 1989 .

[29]  H. Schaefer,et al.  The infrared spectrum of water. Basis set dependence at the single and double excitation coupled cluster (CCSD) level of theory , 1988 .

[30]  Peter R. Taylor,et al.  General contraction of Gaussian basis sets. I. Atomic natural orbitals for first‐ and second‐row atoms , 1987 .

[31]  G. Scuseria,et al.  A systematic theoretical study of harmonic vibrational frequencies: The single and double excitation coupled cluster (CCSD) method , 1988 .

[32]  J. Olsen,et al.  A non-linear approach to configuration interaction: The low-rank CI method (LR CI) , 1987 .

[33]  Donald E. Jennings,et al.  High-resolution infrared spectrum of hydrogen peroxide: The ν6 fundamental band , 1986 .

[34]  Henry F. Schaefer,et al.  A new implementation of the full CCSDT model for molecular electronic structure , 1988 .

[35]  G. Scuseria,et al.  Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD) , 1989 .

[36]  J. Simons,et al.  Ab initio analytical molecular gradients and Hessians , 1983 .

[37]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[38]  A study of the ground electronic state of hydrogen peroxide , 1989 .

[39]  J. Olsen,et al.  Linear and nonlinear response functions for an exact state and for an MCSCF state , 1985 .

[40]  W. D. Allen,et al.  The anharmonic force fields of HOF and F2O , 1988 .

[41]  R. Bartlett,et al.  Erratum: A coupled cluster approach with triple excitations [J. Chem. Phys. 81, 5906 (1984)] , 1985 .

[42]  R. Bartlett Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry , 1989 .

[43]  Jens Oddershede,et al.  A coupled cluster polarization propagator method applied to CH , 1986 .

[44]  Henry F. Schaefer,et al.  The photodissociation of formaldehyde: A coupled cluster study including connected triple excitations of the transition state barrier height for H2CO→H2+CO , 1989 .

[45]  Trygve Helgaker,et al.  Mo/ller–Plesset energy derivatives , 1988 .

[46]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .