Experimental Phase Estimation Enhanced By Machine Learning

Phase estimation protocols provide a fundamental benchmark for the field of quantum metrology. The latter represents one of the most relevant applications of quantum theory, potentially enabling the capability of measuring unknown physical parameters with improved precision over classical strategies. Within this context, most theoretical and experimental studies have focused on determining the fundamental bounds and how to achieve them in the asymptotic regime where a large number of resources is employed. However, in most applications it is necessary to achieve optimal precisions by performing only a limited number of measurements. To this end, machine learning techniques can be applied as a powerful optimization tool. Here, we implement experimentally single-photon adaptive phase estimation protocols enhanced by machine learning, showing the capability of reaching optimal precision after a small number of trials. In particular, we introduce a new approach for Bayesian estimation that exhibit best performances for very low number of photons N. Furthermore, we study the resilience to noise of the tested methods, showing that the optimized Bayesian approach is very robust in the presence of imperfections. Application of this methodology can be envisaged in the more general multiparameter case, that represents a paradigmatic scenario for several tasks including imaging or Hamiltonian learning.

[1]  D. Cory,et al.  Hamiltonian learning and certification using quantum resources. , 2013, Physical review letters.

[2]  Jian-Wei Pan,et al.  Satellite-Relayed Intercontinental Quantum Network. , 2018, Physical review letters.

[3]  M. Kolobov The spatial behavior of nonclassical light , 1999 .

[4]  V. Verma,et al.  Unconditional violation of the shot-noise limit in photonic quantum metrology , 2017, 1707.08977.

[5]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[6]  Alexander Hentschel,et al.  Machine learning for precise quantum measurement. , 2009, Physical review letters.

[7]  Vadim N. Smelyanskiy,et al.  Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state , 2010, 1006.1645.

[8]  Igor Jex,et al.  Dual-path source engineering in integrated quantum optics , 2015, 1505.01416.

[9]  Asher Peres,et al.  Transmission of a Cartesian frame by a quantum system. , 2001, Physical review letters.

[10]  John K. Stockton,et al.  Adaptive homodyne measurement of optical phase. , 2002, Physical review letters.

[11]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[12]  Wiseman,et al.  Adaptive phase measurements of optical modes: Going beyond the marginal Q distribution. , 1995, Physical review letters.

[13]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[14]  Ashish Kapoor,et al.  Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning , 2014, Quantum Inf. Comput..

[15]  Jan Kolodynski,et al.  Phase estimation without a priori phase knowledge in the presence of loss , 2010, 1006.0734.

[16]  Neil B. Lovett,et al.  Differential evolution for many-particle adaptive quantum metrology. , 2013, Physical review letters.

[17]  Brian J. Smith,et al.  Optimal quantum phase estimation. , 2008, Physical review letters.

[18]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[19]  Wiseman,et al.  Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.

[20]  Brody,et al.  Geometry of Quantum Statistical Inference. , 1996, Physical review letters.

[21]  Warwick P. Bowen,et al.  Quantum metrology and its application in biology , 2014, 1409.0950.

[22]  Jeremy L O'Brien,et al.  Heralding two-photon and four-photon path entanglement on a chip. , 2010, Physical review letters.

[23]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[24]  Chiara Macchiavello,et al.  Digital Quantum Estimation. , 2017, Physical review letters.

[25]  C. M. Natarajan,et al.  On-chip quantum interference between silicon photon-pair sources , 2013, Nature Photonics.

[26]  Minimum decision cost for quantum ensembles. , 1995, Physical review letters.

[27]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[28]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[29]  Barry C. Sanders,et al.  An efficient algorithm for optimizing adaptive quantum metrology processes , 2011, 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim incorporating the Australasian Conference on Optics, Lasers and Spectroscopy and the Australian Conference on Optical Fibre Technology.

[30]  M. W. Mitchell,et al.  Super-resolving phase measurements with a multiphoton entangled state , 2004, Nature.

[31]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[32]  S. Paesani,et al.  Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip. , 2017, Physical review letters.

[33]  Nathan Wiebe,et al.  Efficient Bayesian Phase Estimation. , 2015, Physical review letters.

[34]  Vogel,et al.  Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. , 1989, Physical review. A, General physics.

[35]  P. Humphreys,et al.  Optimal Measurements for Simultaneous Quantum Estimation of Multiple Phases. , 2017, Physical review letters.

[36]  F. Petruccione,et al.  An introduction to quantum machine learning , 2014, Contemporary Physics.

[37]  W. Marsden I and J , 2012 .

[38]  C-Y Lu,et al.  Entanglement-based machine learning on a quantum computer. , 2015, Physical review letters.

[39]  Augusto Smerzi,et al.  Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. , 2007, Physical review letters.

[40]  Ying Li,et al.  Photonic polarization gears for ultra-sensitive angular measurements , 2013, Nature Communications.

[41]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[42]  E. Bagan,et al.  Multiple-copy two-state discrimination with individual measurements , 2004, quant-ph/0410097.

[43]  L. G. Helt,et al.  Tunable quantum interference in a 3D integrated circuit , 2014, Scientific Reports.

[44]  Peter P Rohde,et al.  Multiphoton Interference in Quantum Fourier Transform Circuits and Applications to Quantum Metrology. , 2017, Physical review letters.

[45]  R Hanson,et al.  Optimized quantum sensing with a single electron spin using real-time adaptive measurements. , 2015, Nature nanotechnology.

[46]  P. Humphreys,et al.  Quantum enhanced multiple phase estimation. , 2013, Physical review letters.

[47]  Daniel Lobser,et al.  Experimental Demonstration of a Cheap and Accurate Phase Estimation. , 2017, Physical review letters.

[48]  S. Lloyd,et al.  Quantum-enhanced positioning and clock synchronization , 2001, Nature.

[49]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[50]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[51]  Marco Barbieri,et al.  Multiparameter quantum metrology , 2012 .

[52]  C. Macchiavello,et al.  Detection of the density matrix through optical homodyne tomography without filtered back projection. , 1994, Physical Review A. Atomic, Molecular, and Optical Physics.

[53]  Marco G. Genoni,et al.  Joint estimation of phase and phase diffusion for quantum metrology , 2014, Nature Communications.

[54]  Joachim Knittel,et al.  Biological measurement beyond the quantum limit , 2012, Nature Photonics.

[55]  G. Aeppli,et al.  Proceedings of the International School of Physics Enrico Fermi , 1994 .

[56]  Simone Atzeni,et al.  Integrated sources of entangled photons at telecom wavelength in femtosecond-laser-written circuits , 2017, 1710.09618.

[57]  Konrad Lehnert,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004 .

[58]  Sébastien Tanzilli,et al.  On-chip generation of heralded photon-number states , 2016, Scientific Reports.

[59]  Tillmann Baumgratz,et al.  Multi-parameter quantum metrology , 2016, 1604.02615.

[60]  Marco G. Genoni,et al.  Entangling measurements for multiparameter estimation with two qubits , 2017, 1704.03327.

[61]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[62]  Augusto Smerzi,et al.  Useful multiparticle entanglement and sub-shot-noise sensitivity in experimental phase estimation. , 2011, Physical review letters.

[63]  Augusto Smerzi,et al.  Quantum-enhanced multiparameter estimation in multiarm interferometers , 2015, Scientific Reports.

[64]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[65]  O. Barndorff-Nielsen,et al.  Fisher information in quantum statistics , 1998, quant-ph/9808009.

[66]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[67]  P. Simon Too Big to Ignore: The Business Case for Big Data , 2013 .

[68]  D. Brody,et al.  Generalised Heisenberg relations for quantum statistical estimation , 1997 .

[69]  Jonathan P. Dowling,et al.  Linear optical quantum metrology with single photons: experimental errors, resource counting, and quantum Cramér-Rao bounds , 2017 .

[70]  Griffiths,et al.  Semiclassical Fourier transform for quantum computation. , 1995, Physical review letters.

[71]  U. W. Rathe,et al.  Theoretical basis for a new subnatural spectroscopy via correlation interferometry , 1995 .

[72]  N. Godbout,et al.  Entanglement-enhanced probing of a delicate material system , 2012, Nature Photonics.

[73]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[74]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[75]  Y. Shih Quantum Imaging , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[76]  N. Mavalvala,et al.  Quantum metrology for gravitational wave astronomy. , 2010, Nature communications.

[77]  Y. Silberberg,et al.  High-NOON States by Mixing Quantum and Classical Light , 2010, Science.