Numerical dispersion compensation for optical coherence tomography in the Wigner domain

Dispersive objects result in a loss of resolution in time-domain optical coherence tomography (TD-OCT). A typical technique to compensate for this effect is to introduce dispersive material in the reference arm. This method however is not very effective, as the dispersion effect of the object is depth dependent. We implement a dispersion compensation algorithm in the Wigner domain for TD-OCT. This shift-variant numerical compensation approach is more efficient than the previously reported shift-invariant methods which required a deconvolution operation for every depth.