Seismic History Matching of Fluid Fronts Using the Ensemble Kalman Filter
暂无分享,去创建一个
Time-lapse seismic data provide information on the dynamics of multiphase reservoir fluid flow in places where no production data from wells are available. This information, in principle, could be used to estimate unknown reservoir properties. However, the amount, resolution, and character of the data have long posed significant challenges for quantitative use in assisted-history- matching workflows. Previous studies, therefore, have generally investigated methods for updating single models with reduced parameter-uncertainty space. Recent developments in ensemble- based history-matching methods have shown the feasibility of multimodel history and matching of production data while maintaining a full uncertainty description. Here, we introduce a robust and flexible reparameterization for interpreted fluid fronts or seismic attribute isolines that extends these developments to seismic history matching. The seismic data set is reparameterized, in terms of arrival times, at observed front positions, thereby significantly reducing the number of data while retaining essential information. A simple 1D example is used to introduce the concepts of the approach. A synthetic 3D example, with spatial complexity that is typical for many water floods, is examined in detail. History-matching cases based on both separate and combined use of production and seismic data are examined. It is shown that consistent multimodel history matches can be obtained without the need for reduction of the parameter space or for localization of the impact of observations. The quality of forecasts based on the history-matched models is evaluated by simulating both expected production and saturation changes throughout the field for a fixed operating strategy. It is shown that bias and uncertainty in the forecasts of production both at existing wells and in the flooded area are reduced considerably when both production and seismic data are incorporated. The proposed workflow, therefore, enables better decisions on field developments that require optimal placement of infill wells. Copyright © 2013 Society of Petroleum Engineers.