Semi-automatic Approximate Bayesian Computation

[1]  Arnaud Doucet,et al.  An adaptive sequential Monte Carlo method for approximate Bayesian computation , 2011, Statistics and Computing.

[2]  Gareth W. Peters,et al.  On sequential Monte Carlo, partial rejection control and approximate Bayesian computation , 2008, Statistics and Computing.

[3]  Olivier François,et al.  Non-linear regression models for Approximate Bayesian Computation , 2008, Stat. Comput..

[4]  Joao S. Lopes,et al.  PopABC: a program to infer historical demographic parameters , 2009, Bioinform..

[5]  Alex R Cook,et al.  The International Journal of Biostatistics Inference in Epidemic Models without Likelihoods , 2011 .

[6]  Christophe Andrieu,et al.  Model criticism based on likelihood-free inference, with an application to protein network evolution , 2009, Proceedings of the National Academy of Sciences.

[7]  David Allingham,et al.  Bayesian estimation of quantile distributions , 2009, Stat. Comput..

[8]  Daniel J. Wilson,et al.  Rapid Evolution and the Importance of Recombination to the Gastroenteric Pathogen Campylobacter jejuni , 2008, Molecular biology and evolution.

[9]  C. Robert,et al.  Adaptive approximate Bayesian computation , 2008, 0805.2256.

[10]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[11]  Paul Marjoram,et al.  Statistical Applications in Genetics and Molecular Biology Approximately Sufficient Statistics and Bayesian Computation , 2011 .

[12]  C. Robert,et al.  ABC likelihood-free methods for model choice in Gibbs random fields , 2008, 0807.2767.

[13]  Jean-Marie Cornuet,et al.  Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation , 2008, Bioinform..

[14]  Tilmann Gneiting,et al.  Editorial: Probabilistic forecasting , 2008 .

[15]  S. Coles,et al.  Inference for Stereological Extremes , 2007 .

[16]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[17]  Paul Marjoram,et al.  Estimating Recombination Rates From Single-Nucleotide Polymorphisms Using Summary Statistics , 2006, Genetics.

[18]  Andrew R. Francis,et al.  Using Approximate Bayesian Computation to Estimate Tuberculosis Transmission Parameters From Genotype Data , 2006, Genetics.

[19]  Kerrie Mengersen,et al.  Bayesian estimation ofg-and-k distributions using MCMC , 2005, Comput. Stat..

[20]  K. Heggland,et al.  Estimating functions in indirect inference , 2004 .

[21]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[23]  G. D. Rayner,et al.  Numerical maximum likelihood estimation for the g-and-k and generalized g-and-h distributions , 2002, Stat. Comput..

[24]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[25]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[26]  Jun S. Liu,et al.  Metropolized independent sampling with comparisons to rejection sampling and importance sampling , 1996, Stat. Comput..

[27]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[28]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .