spikeSlabGAM: Bayesian Variable Selection, Model Choice and Regularization for Generalized Additive Mixed Models in R

The R package spikeSlabGAM implements Bayesian variable selection, model choice, and regularized estimation in (geo-)additive mixed models for Gaussian, binomial, and Poisson responses. Its purpose is to (1) choose an appropriate subset of potential covariates and their interactions, (2) to determine whether linear or more flexible functional forms are required to model the effects of the respective covariates, and (3) to estimate their shapes. Selection and regularization of the model terms is based on a novel spike-and-slab-type prior on coefficient groups associated with parametric and semi-parametric effects.

[1]  James G. Scott,et al.  The horseshoe estimator for sparse signals , 2010 .

[2]  Ludwig Fahrmeir,et al.  Bayesian regularisation in structured additive regression: a unifying perspective on shrinkage, smoothing and predictor selection , 2010, Stat. Comput..

[3]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[4]  Curtis B. Storlie,et al.  Variable Selection in Bayesian Smoothing Spline ANOVA Models: Application to Deterministic Computer Codes , 2009, Technometrics.

[5]  L. Fahrmeir,et al.  Bayesian Regularisation in Structured Additive Regression Models for Survival Data , 2008 .

[6]  A. Gelman,et al.  Using Redundant Parameterizations to Fit Hierarchical Models , 2008 .

[7]  Alan Y. Chiang,et al.  Generalized Additive Models: An Introduction With R , 2007, Technometrics.

[8]  Robert Kohn,et al.  Variable Selection and Model Averaging in Semiparametric Overdispersed Generalized Linear Models , 2007, 0707.2158.

[9]  Hao Helen Zhang,et al.  Component selection and smoothing in multivariate nonparametric regression , 2006, math/0702659.

[10]  S. Wood,et al.  Generalized Additive Models: An Introduction with R , 2006 .

[11]  Thomas Kneib,et al.  Mixed model based inference in structured additive regression , 2006 .

[12]  T. Kneib,et al.  BayesX: Analyzing Bayesian Structural Additive Regression Models , 2005 .

[13]  Lothar Reichel,et al.  Augmented Implicitly Restarted Lanczos Bidiagonalization Methods , 2005, SIAM J. Sci. Comput..

[14]  J. S. Rao,et al.  Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.

[15]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[16]  Andrew Gelman,et al.  R2WinBUGS: A Package for Running WinBUGS from R , 2005 .

[17]  Bani K. Mallick,et al.  Gene selection using a two-level hierarchical Bayesian model , 2004, Bioinform..

[18]  S. Lang,et al.  Bayesian P-Splines , 2004 .

[19]  T. Kneib S01.1: Penalized structured additive regression for space-time data , 2004 .

[20]  Robert Kohn,et al.  Bayesian Variable Selection and Model Averaging in High-Dimensional Multinomial Nonparametric Regression , 2003 .

[21]  Thomas S. Shively,et al.  Model selection in spline nonparametric regression , 2002 .

[22]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo Methods for Computing Bayes Factors , 2001 .

[23]  G. Wahba,et al.  Smoothing spline ANOVA for exponential families, with application to the Wisconsin Epidemiological Study of Diabetic Retinopathy : the 1994 Neyman Memorial Lecture , 1995 .

[24]  E. George,et al.  Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .

[25]  Chong Gu Diagnostics for Nonparametric Regression Models with Additive Terms , 1992 .

[26]  J. Beauchamp,et al.  Bayesian Variable Selection in Linear Regression , 1988 .

[27]  Fabian Scheipl,et al.  Bayesian regularization and model choice in structured additive regression , 2011 .

[28]  Helga Wagner,et al.  Bayesian Variable Selection for Random Intercept Modeling of Gaussian and non-Gaussian Data , 2010 .

[29]  L. Fahrmeir,et al.  PENALIZED STRUCTURED ADDITIVE REGRESSION FOR SPACE-TIME DATA: A BAYESIAN PERSPECTIVE , 2004 .

[30]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[31]  Xiao-Li Meng,et al.  The EM Algorithm—an Old Folk‐song Sung to a Fast New Tune , 1997 .

[32]  James G. Scott,et al.  Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction , 2022 .