Near-infrared spectra of ferrous mineral mixtures and methods for their identification in planetary surface spectra

Abstract Iron-bearing minerals are a major component of planetary surfaces, and many can be identified by their characteristic absorption bands in the near-infrared (NIR). Here we present laboratory NIR spectra of a wide range of common Fe-bearing minerals ( e.g. , olivines, pyroxenes), glasses, and mineral/glass mixtures. We then use this suite of spectra to evaluate the effects of mixtures on mineral detection methods, including olivine and pyroxene spectral indices developed for the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard Mars Reconnaissance Orbiter. We find that although these indices can be compromised by minerals with atypical compositions, mineral mixtures, and the presence of other ferrous minerals, these issues can generally be mitigated by visual inspection of the spectra. However, a special case occurs when the mineral or mixture in question is spectrally indistinguishable from a more common mineral. In particular, we show that spectra of high-calcium pyroxene mixed with Fe-bearing glass can be virtually indistinguishable from common Fe-bearing olivine compositions. This effect, combined with the fact that Fe-bearing glass is generally much more difficult to detect than other ferrous minerals, may be causing glass occurrences on planetary surfaces to be underreported. In support of this hypothesis, we use Mars Express OMEGA observations to show that previous olivine detections in the north polar sand sea on Mars are actually more consistent with local mixing of glass and pyroxene. To address these issues, we present an alternative ferrous mineral identification method based on the position and shape of the 1 and 2 μm iron absorption bands, which are sensitive to mineralogy, composition, and mineral mixtures in planetary surface spectra, including glass and mixtures with glass. Using Chandrayaan-1 Moon Mineralogy Mapper (M 3 ) observations of Aristarchus Crater on the Moon, we show that these band parameters can reveal subtle spectral variations and can produce mineralogical maps at an exceptional level of detail.

[1]  Robert O. Green,et al.  The mineralogy of late stage lunar volcanism as observed by the Moon Mineralogy Mapper on Chandrayaan‐1 , 2009 .

[2]  John F. Mustard,et al.  Quantitative Abundance Estimates From Bidirectional Reflectance Measurements , 1987 .

[3]  G. He,et al.  Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water: Wavelength, size, and angle dependences , 2009 .

[4]  Erick R. Malaret,et al.  A visible and near-infrared photometric correction for Moon Mineralogy Mapper (M 3 ) , 2013 .

[5]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[6]  R. Burns Site preferences of transition metal ions in silicate crystal structures , 1970 .

[7]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[8]  Joseph W. Boardman,et al.  New insights into lunar petrology: Distribution and composition of prominent low‐Ca pyroxene exposures as observed by the Moon Mineralogy Mapper (M3) , 2011 .

[9]  Alessandro Maturilli,et al.  Spectral and petrologic analyses of basaltic sands in Ka'u Desert (Hawaii) – implications for the dark dunes on Mars , 2012 .

[10]  Jean-Pierre Bibring,et al.  Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express , 2005, Science.

[11]  Robert O. Green,et al.  Thermal removal from near‐infrared imaging spectroscopy data of the Moon , 2011 .

[12]  John B. Adams,et al.  Lunar and Martian Surfaces: Petrologic Significance of Absorption Bands in the Near-Infrared , 1968, Science.

[13]  Carle M. Pieters,et al.  Determining the composition of olivine from reflectance spectroscopy , 1998 .

[14]  E. Cloutis,et al.  Stability of hydrated minerals on Mars , 2007 .

[15]  Lisa R. Gaddis,et al.  Compositional analyses of lunar pyroclastic deposits , 2003 .

[16]  Joseph W. Boardman,et al.  The Moon Mineralogy Mapper (M 3 ) on Chandrayaan-1 , 2009 .

[17]  J. Mustard,et al.  From Minerals to Rocks: Toward Modeling Lithologies with Remote Sensing , 1993 .

[18]  James P. Evans The Origin , 2009, Genetics in Medicine.

[19]  Joseph W. Boardman,et al.  The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on‐orbit measurements, science data calibration and on‐orbit validation , 2011 .

[20]  Gabriele Arnold,et al.  A Model of Spectral Albedo of Particulate Surfaces: Implications for Optical Properties of the Moon , 1999 .

[21]  B. Ehlmann,et al.  Refining Martian Carbonate Chemistries Determined Through CRISM Analyses of Several Carbonate-Bearing Outcrops , 2013 .

[22]  F. Poulet,et al.  On the origin of gypsum in the Mars north polar region , 2006 .

[23]  Bruce Hapke,et al.  Space weathering from Mercury to the asteroid belt , 2001 .

[24]  J. Mustard,et al.  Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data 1. Methodology, uncertainties and examples of application , 2009 .

[25]  R. J. Reid,et al.  Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder , 2000 .

[26]  Dale P. Cruikshank,et al.  Three basaltic earth-approaching asteroids and the source of the basaltic meteorites , 1991 .

[27]  F. Poulet,et al.  Ancient plutonic processes on Mars inferred from the detection of possible anorthositic terrains , 2013 .

[28]  W. Ridley,et al.  Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications , 1987 .

[29]  F. Poulet,et al.  Spectral variability of the Martian high latitude surfaces , 2008 .

[30]  C. Pieters,et al.  Deconvolution of lunar olivine reflectance spectra: Implications for remote compositional assessment , 2010 .

[31]  L. Gaddis,et al.  Remote sensing and geologic studies of localized dark mantle deposits on the moon , 1989 .

[32]  C. Kreisch Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) Along Track Oversampled (ATO) Observations , 2012 .

[33]  Lisa R. Gaddis,et al.  Remote sensing of lunar pyroclastic mantling deposits , 1985 .

[34]  S. Erard,et al.  The Aristarchus Plateau on the Moon: Mineralogical and structural study from integrated Clementine UV Vis NIR spectral data , 2009 .

[35]  R. Singer Near-infrared spectral reflectance of mineral mixtures - Systematic combinations of pyroxenes, olivine, and iron oxides , 1981 .

[36]  Carle M. Pieters,et al.  Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model , 1993 .

[37]  Carle M. Pieters,et al.  Composition of the lunar highland crust from near‐infrared spectroscopy , 1986 .

[38]  Robert O. Green,et al.  Compositional variability of the Marius Hills volcanic complex from the Moon Mineralogy Mapper (M3) , 2011 .

[39]  Scott L. Murchie,et al.  Prolonged magmatic activity on Mars inferred from the detection of felsic rocks , 2013 .

[40]  J. Mustard,et al.  VIS-NIR Spectral Properties of Olivine in a Basaltic Glass: Implications for Olivine-rich Terrains on Mars , 2006 .

[41]  T. Hiroi,et al.  Bidirectional visible‐NIR and biconical FT‐IR reflectance spectra of Almahata Sitta meteorite samples , 2010 .

[42]  J. Bell,et al.  Distribution of hydrated minerals in the north polar region of Mars , 2009 .

[43]  Richard P. Binzel,et al.  Asteroid spectroscopy: Progress and perspectives , 1993 .

[44]  Stephane Erard,et al.  The distribution of olivine in the Crater Aristarchus inferred from Clementine NIR data , 1999 .

[45]  John W. Salisbury,et al.  Visible and near infrared spectra of minerals and rocks. II. Carbonates , 1971 .

[46]  Carle M. Pieters,et al.  The distribution and purity of anorthosite across the Orientale basin: New perspectives from Moon Mineralogy Mapper data , 2013 .

[47]  Raymond E. Arvidson,et al.  Hyperspectral reflectance mapping of cinder cones at the summit of Mauna Kea and implications for equivalent observations on Mars , 2007 .

[48]  John F. Mustard,et al.  Detection and discrimination of sulfate minerals using reflectance spectroscopy , 2006 .

[49]  L. Soderblom The composition and mineralogy of the Martian surface from spectroscopic observations: 0.3 μm to 50 μm. , 1992 .

[50]  S. Murchie,et al.  What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars , 2013 .

[51]  Jean-Pierre Bibring,et al.  Phyllosilicate Diversity and Past Aqueous Activity Revealed at Mawrth Vallis, Mars , 2008, Science.

[52]  S. J. Sutley,et al.  Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems , 2003 .

[53]  R. Wäsch,et al.  Near-infrared reflectance spectroscopy of Ca-rich clinopyroxenes and prospects for remote spectral characterization of planetary surfaces , 2004 .

[54]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[55]  Frank E. Huggins,et al.  Crystal field spectra of lunar pyroxenes. , 1972 .

[56]  M. Darby Dyar,et al.  Characterization of the 1.2 μm M1 pyroxene band: Extracting cooling history from near‐IR spectra of pyroxenes and pyroxene‐dominated rocks , 2008 .

[57]  J. Boardman,et al.  New insights into lunar petrology : Distribution and composition of prominent low ‐ Ca pyroxene exposures as observed by the Moon Mineralogy Mapper ( M 3 ) , 2011 .

[58]  John F. Mustard,et al.  Compositional diversity and geologic insights of the Aristarchus crater from Moon Mineralogy Mapper data , 2011 .

[59]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Spirit Rover at Gusev Crater , 2004, Science.

[60]  Carle M. Pieters,et al.  Moon: near-infrared spectral reflectance, a first good look. , 1981 .

[61]  S. J. Sutley,et al.  USGS Digital Spectral Library splib06a , 2007 .

[62]  John F. Mustard,et al.  Remote compositional analysis of lunar olivine‐rich lithologies with Moon Mineralogy Mapper (M3) spectra , 2011 .

[63]  Raymond E. Arvidson,et al.  Optical scattering properties of terrestrial varnished basalts compared with rocks and soils at the Viking Lander sites , 1997 .

[64]  Bonnie J. Buratti,et al.  A photometric function for analysis of lunar images in the visual and infrared based on Moon Mineralogy Mapper observations , 2011 .

[65]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[66]  D. Ming,et al.  Silica in a Mars analog environment: Ka'u Desert, Kilauea Volcano, Hawaii , 2010 .

[67]  G. Hunt SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE AND NEAR INFRARED , 1977 .

[68]  Yves Langevin,et al.  OMEGA/Mars Express: Visual channel performances and data reduction techniques , 2006 .

[69]  J. Bell,et al.  Widespread Weathered Glass on the Surface of Mars , 2012 .

[70]  Michael J. Gaffey,et al.  Spectral-compositional variations in the constituent minerals of mafic and ultramafic assemblages and remote sensing implications , 1991 .

[71]  J. Bishop,et al.  Schwertmannite on Mars? Spectroscopic analyses of schwertmannite, its relationship to other ferric minerals, and its possible presence in the surface material on Mars , 1996 .

[72]  C. Pieters,et al.  Reflectance and Mossbauer spectroscopy of ferrihydrite-montmorillonite assemblages as Mars soil analog materials. , 1993, Geochimica et cosmochimica acta.

[73]  Jean-Pierre Bibring,et al.  Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data. 2. Petrological implications , 2009 .

[74]  S. Erard,et al.  Nonlinear spectral mixing: Quantitative analysis of laboratory mineral mixtures , 2004 .

[75]  Carle M. Pieters,et al.  Deconvolution of mineral absorption bands: An improved approach , 1990 .

[76]  M. Darby Dyar,et al.  Near‐infrared spectra of clinopyroxenes: Effects of calcium content and crystal structure , 2011 .

[77]  R. Clark,et al.  Lunar mare deposits associated with the Orientale impact basin: New insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan‐1 , 2011 .

[78]  R. G. J. Strens,et al.  Mineralogical Applications of Crystal Field Theory , 1973 .

[79]  H. Mao,et al.  Effects of compositional variation on absorption spectra of lunar pyroxenes , 1978 .

[80]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[81]  Paul G. Lucey,et al.  A compositional study of the Aristarchus Region of the Moon using near‐infrared reflectance spectroscopy , 1986 .

[82]  C. Weitz,et al.  Morphology, chemistry, and spectral properties of Hawaiian rock coatings and implications for Mars , 2007 .

[83]  Claudia Biermann,et al.  Mineralogical Applications Of Crystal Field Theory , 2016 .

[84]  Joseph W. Boardman,et al.  Measuring moonlight: An overview of the spatial properties, lunar coverage, selenolocation, and related Level 1B products of the Moon Mineralogy Mapper , 2011 .

[85]  C. Weitz,et al.  Lunar regional dark mantle deposits: Geologic, multispectral, and modeling studies , 1998 .

[86]  Dorian G. W. Smith,et al.  Reflectance spectra of glass-bearing mafic silicate mixtures and spectral deconvolution procedures , 1990 .

[87]  M. J. Wolff,et al.  CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance , 2007 .

[88]  J. Mustard,et al.  Effects of glass content and oxidation on the spectra of SNC-like basalts: Applications to Mars remote sensing , 2002 .

[89]  Roger G. Burns,et al.  Crystal field spectra and evidence of cation ordering in olivine minerals , 1970 .

[90]  Akira Iwasaki,et al.  The global distribution of pure anorthosite on the Moon , 2009, Nature.

[91]  Michael J. Gaffey,et al.  Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry , 1991 .

[92]  Michael J. Gaffey,et al.  Spectral reflectance characteristics of the meteorite classes , 1976 .

[93]  Richard P. Binzel,et al.  An extension of the Bus asteroid taxonomy into the near-infrared , 2009 .

[94]  Jean-Pierre Bibring,et al.  Abundance of minerals in the phyllosilicate-rich units on Mars , 2008 .

[95]  Michael J. Gaffey,et al.  Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra , 1986 .

[96]  Patrick Pinet,et al.  Martian surface mineralogy from Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps , 2007 .

[97]  John B. Adams,et al.  Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .

[98]  J. B. Adams,et al.  Plagioclase feldspars - Visible and near infrared diffuse reflectance spectra as applied to remote sensing , 1978 .

[99]  C. M. Pieters,et al.  Strength of mineral absorption features in the transmitted component of near-infrared reflected light - First results from RELAB. [spectrogoniometer for planetary and lunar surface composition experiments] , 1983 .

[100]  E. Cloutis Pyroxene reflectance spectra: Minor absorption bands and effects of elemental substitutions , 2002 .

[101]  Improved Scheme of Modified Gaussian Deconvolution for Reflectance Spectra of Lunar Soils , 2000 .

[102]  R. Morris,et al.  Spectral and other physicochemical properties of submicron powders of hematite (alpha-Fe2O3), maghemite (gamma-Fe2O3), magnetite (Fe3O4), goethite (alpha-FeOOH), and lepidocrocite (gamma-FeOOH). , 1985, Journal of geophysical research.

[103]  Patrick Pinet,et al.  A new systematic approach using the Modified Gaussian Model: Insight for the characterization of chemical composition of olivines, pyroxenes and olivine-pyroxene mixtures , 2011 .

[104]  Michael Bruce Wyatt,et al.  Definitive evidence of Hesperian basalt in Acidalia and Chryse planitiae , 2010 .

[105]  A. McEwen,et al.  Clementine Observations of the Aristarchus Region of the Moon , 1994, Science.

[106]  S. Erard,et al.  In situ compositions of Martian volcanics: Implications for the mantle , 1997 .

[107]  Janice L. Bishop,et al.  Decomposition of mineral absorption bands using nonlinear least squares curve fitting: Application to Martian meteorites and CRISM data , 2011 .

[108]  Bruce Hapke,et al.  Effects of vapor-phase deposition processes on the optical, chemical, and magnetic properties OE the lunar regolith , 1975 .

[109]  Alessandro Maturilli,et al.  An analogy study of basaltic dune sands on Mars and Hawaii , 2011 .

[110]  Jean-Pierre Bibring,et al.  A new method to investigate hyperspectral image cubes: An application of the wavelet transform , 2006 .

[111]  M. Darby Dyar,et al.  Spectroscopy of synthetic Mg‐Fe pyroxenes I: Spin‐allowed and spin‐forbidden crystal field bands in the visible and near‐infrared , 2007 .

[112]  John B. Adams,et al.  4 – INTERPRETATION OF VISIBLE AND NEAR-INFRARED DIFFUSE REFLECTANCE SPECTRA OF PYROXENES AND OTHER ROCK-FORMING MINERALS , 1975 .

[113]  U. Fink,et al.  Spectroscopic evidence for two achondrite parent bodies: asteroids 349 Dembowska and 4 Vesta , 1980 .

[114]  A. J. Cohen,et al.  Solar radiation effects on the optical properties of Apollo 11 samples , 1970 .

[115]  Y. Langevin,et al.  Olivine and Pyroxene Diversity in the Crust of Mars , 2005, Science.

[116]  T. McCord,et al.  Orange glass - Evidence for regional deposits of pyroclastic origin on the moon , 1974 .

[117]  R. Clark,et al.  High spectral resolution reflectance spectroscopy of minerals , 1990 .

[118]  B. R. Hawke,et al.  Compositional Variability of the Serenitatis/Tranquillitatis Region of the Moon from Telescopic Multispectral Imaging and Spectroscopy , 1995 .

[119]  J. B. Adams,et al.  Spectral Reflectivity of Lunar Samples , 1970, Science.