The Timpa delle Murge ophiolitic gabbros, southern Apennines: insights from petrology and geochemistry and consequences to the geodynamic setting

Abstract The Timpa delle Murge ophiolite in the North Calabrian Unit is part of the Liguride Complex (southern Apennines). The study is concentrated on the gabbroic part of the ophiolite of the Pollino area. They preserve the high-grade ocean floor metamorphic and locally developed flaser textures under ocean floor conditions. The primary magmatic assamblages are clinopyroxene, plagioclase, and opaques. Brown hornblende is a late magmatic phase. Green hornblende, actinolite, albite, chlorite and epidote display metamorphic recrystallization under lower amphibolite facies conditions, followed by greenschist facies. The gabbros show subalkaline near to alkaline character with a tendency to a more calkalkaline trend. The normalization to primitive mantle and mid-ocean ridge basalt (N-MORB) compositions indicates a considerable depletion in Nb, P, Zr and Ti and an enrichment in Ba, Rb, K, Sr and Eu. This points to a mantle source, which is not compatible with a “normal” mid-ocean ridge situation. Rather, the gabbros are generated from a N-MORB-like melt with a strong crustal component, which was influenced by subduction related fluids and episodic melting during mid-ocean-ridge processes. Plausible geodynamic settings of the Timpa delle Murge gabbros are oceanic back-arc positions with embryonic MORB-activities. Similar slab contaminated magmatism is also known from the early stage of island arc formation in supra-subduction zone environments like the Izu-Bonin-Mariana island arc.

[1]  A. Schettino,et al.  Tectonic history of the western Tethys since the Late Triassic , 2011 .

[2]  H. Furnes,et al.  Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana , 2007 .

[3]  David A. Atwood,et al.  The rare earth elements : fundamentals and applications , 2012 .

[4]  E. Patacca,et al.  Geology of the Southern Apennines , 2007 .

[5]  M. Riccardi,et al.  Trace element redistribution in high-temperature deformed gabbros from East Ligurian ophiolites (Northern Apennines, Italy): constraints on the origin of syndeformation fluids , 1995 .

[6]  Tarun C. Khanna Geochemical evidence for a paired arc – back-arc association in the Neoarchean Gadwal greenstone belt , eastern Dharwar craton , India , 2013 .

[7]  H. Furnes,et al.  Rift-Drift, Seafloor Spreading, and Subduction Tectonics of Albanian Ophiolites , 2005 .

[8]  D. Garbe‐Schönberg,et al.  Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5–38.0°S): Constraints on mantle wedge and slab input compositions , 2012 .

[9]  G. Prosser,et al.  Spinel-peridotites of the Frido Unit ophiolites (Southern Apennine-Italy): evidence for oceanic evolution , 2012 .

[10]  S. I. Giano,et al.  Late Pleistocene differential uplift inferred from the analysis of fluvial terraces (southern Apennines, Italy) , 2014 .

[11]  S. Verma Extension-related origin of magmas from a garnet-bearing source in the Los Tuxtlas volcanic field, Mexico , 2006 .

[12]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[13]  E. Kneringer,et al.  The Jurassic South Albanian ophiolites: MOR- vs. SSZ-type ophiolites , 2002 .

[14]  O. Vaselli,et al.  Continental Flood Basalts and Rifting: Geochemistry of Cenozoic Yemen Volcanic Province , 2013 .

[15]  M. Reagan,et al.  Izu-Bonin-Mariana Forearc Crust as a Modern Ophiolite Analogue , 2014 .

[16]  A. Hofmann,et al.  A global overview of isotopic heterogeneities in the oceanic mantle , 2012 .

[17]  J. Hawkins Geology of supra-subduction zones-Implications for the origin of ophiolites , 2003 .

[18]  M. Tiepolo,et al.  Trace element distribution within olivine-bearing gabbros from the Northern Apennine ophiolites (Italy): evidence for post-cumulus crystallization in MOR-type gabbroic rocks , 1999 .

[19]  H. Furnes,et al.  Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems , 2009 .

[20]  Maria Carmela Dichicco,et al.  μ-Raman spectroscopy and X-ray diffraction of asbestos' minerals for geo-environmental monitoring: The case of the southern Apennines natural sources , 2017 .

[21]  R. Vannucci,et al.  Origin of the Gabbro–Peridotite Association from the Northern Apennine Ophiolites (Italy) , 2004 .

[22]  M. Cannat,et al.  Alpine Jurassic ophiolites resemble the modern central Atlantic basement , 1990 .

[23]  Giovanna Rizzo,et al.  Petrochemical characterization of mafic rocks from the Ligurian ophiolites, southern Apennines , 2011 .

[24]  L. Leoni,et al.  Determination of yttrium and niobium on standard silicate rocks by X‐ray fluorescence analyses , 1976 .

[25]  Albrecht W. Hofmann,et al.  Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust , 1988 .

[26]  J. Hawkins Petrologic and Geochemical Characteristics of Marginal Basin Basalts , 2013 .

[27]  R. W. Le Maitre,et al.  A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram , 1986 .

[28]  P. Vergély,et al.  ALBANIAN OPHIOLITES. I - MAGMATIC AND METAMORPHIC PROCESSES ASSOCIATED WITH THE INITIATION OF A SUBDUCTION , 2000 .

[29]  G. Ciampo,et al.  Il Complesso Liguride Auct.: stato delle conoscenze e problemi aperti sulla sua evoluzione preappenninica ed i suoi rapporti con l'arco calabro. , 1992 .

[30]  R. Stern,et al.  Subduction zone infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs , 1992 .

[31]  R. Kay,et al.  Chemical Characteristics and Origin of Oceanic Ridge Volcanic Rocks , 1970 .

[32]  A. Sanfilippo,et al.  Building of the deepest crust at a fossil slow-spreading centre (Pineto gabbroic sequence, Alpine Jurassic ophiolites) , 2013, Contributions to Mineralogy and Petrology.

[33]  D. Garbe‐Schönberg,et al.  Insights from trace element geochemistry as to the roles of subduction zone geometry and subduction input on the chemistry of arc magmas , 2014, International Journal of Earth Sciences.

[34]  A. Hofmann,et al.  Trace element and isotope geochemistry of depleted peridotites from an N-MORB type ophiolite (Internal Liguride, N. Italy) , 1996 .

[35]  Giacomo Prosser,et al.  Geochronological study of zircons from continental crust rocks in the Frido Unit (southern Apennines) , 2014, International Journal of Earth Sciences.

[36]  R. Vannucci,et al.  Chemistry and origin of trapped melts in ophioiitic peridotites , 1997 .

[37]  W. White,et al.  Petrologic and geochemical variations along the Mid-Atlantic Ridge from 27?N to 73?N , 1983 .

[38]  Steven D. Knott,et al.  Structure, kinematics and metamorphism in the Liguride Complex, southern Apennines, Italy , 1994 .

[39]  A. Sanfilippo,et al.  Melt transport and deformation history in a nonvolcanic ophiolitic section, northern Apennines, Italy: Implications for crustal accretion at slow spreading settings , 2011 .

[40]  Carmelo Monaco,et al.  Ophiolite‐bearing mélanges in southern Italy , 2009 .

[41]  G. Stampfli,et al.  Western Alps geological constraints on western Tethyan reconstructions , 2002 .

[42]  J. Pearce Immobile Element Fingerprinting of Ophiolites , 2014 .

[43]  S. Nocera,et al.  Carta delle principali unità cinematiche dell’Appennino meridionale. Nota illustrativa , 2009 .

[44]  Luciano Cortesogno,et al.  THE PRE-OROGENIC VOLCANO-SEDIMENTARY COVERS OF THE WESTERN TETHYS OCEANIC BASIN: A REVIEW , 2004 .

[45]  A. Hofmann,et al.  Isotopic equilibrium between mantle peridotite and melt: Evidence from the Corsica ophiolite , 2009 .

[46]  M. Franzini,et al.  A simple method to evaluate the matrix effects in X-Ray fluorescence analysis , 1972 .

[47]  S. Mazzoli,et al.  Apennine tectonics in southern Italy: a review , 1998 .

[48]  D. Gioia,et al.  Morphotectonic evolution of connected intermontane basins from the southern Apennines, Italy: the legacy of the pre-existing structurally controlled landscape , 2014, Rendiconti Lincei.

[49]  H. Furnes,et al.  Ophiolites and Their Origins , 2014 .

[50]  Michele Paternoster,et al.  Serpentinite Carbonation for CO2 Sequestration in the Southern Apennines: Preliminary Study , 2015 .

[51]  C. Doglioni,et al.  On the origin of west-directed subduction zones and applications to the western Mediterranean , 1999, Geological Society, London, Special Publications.

[52]  F. Menna FROM MAGMATIC TO METAMORPHIC DEFORMATIONS IN A JURASSIC OPHIOLITIC COMPLEX: THE BRACCO GABBROIC MASSIF, EASTERN LIGURIA (ITALY) , 2009 .

[53]  J. D. Grice,et al.  Nomenclature of amphiboles: additions and revisions to the International Mineralogical Associations amphibole nomenclature , 2004, Mineralogical Magazine.

[54]  B. Leake,et al.  Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names , 1997 .

[55]  Steven D. Knott,et al.  The Liguride Complex of Southern Italy —a Cretaceous to Paleogene accretionary wedge , 1987 .

[56]  Manuel Hernández Fernández,et al.  On the post-25 Ma geodynamic evolution of the western Mediterranean , 1998 .

[57]  F. Perri,et al.  Mineralogy and petrology of the metasedimentary rocks from the Frido Unit (southern Apennines, Italy) , 2016 .

[58]  Giovanna Rizzo,et al.  Pumpellyite veins in the metadolerite of the Frido Unit (Southern Apennines - Italy) , 2012 .

[59]  M. Marroni,et al.  Geochemistry and Petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): from source areas to configuration of margins , 2007 .

[60]  L. Beccaluva,et al.  Magma generation and crustal accretion as evidenced by supra‐subduction ophiolites of the Albanide–Hellenide Subpelagonian zone , 2005 .

[61]  L. Crispini,et al.  Sulfur geochemistry of peridotite-hosted hydrothermal systems: Comparing the Ligurian ophiolites with oceanic serpentinites , 2012 .

[62]  E. Middlemost The basalt clan , 1975 .

[63]  A. Hofmann,et al.  Multi-stage melt–rock interaction in the Mt. Maggiore (Corsica, France) ophiolitic peridotites: microstructural and geochemical evidence , 2008 .

[64]  L. Crispini,et al.  Uptake of carbon and sulfur during seafloor serpentinization and the effects of subduction metamorphism in Ligurian peridotites , 2012 .

[65]  P. Vergély,et al.  ALBANIAN OPHIOLITES. II - MODEL OF SUBDUCTION ZONE INFANCY AT A MID-OCEAN RIDGE , 2000 .