CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames

Abstract Mitigation of soot emissions from combustion devices is a global concern. For example, recent EURO 6 regulations for vehicles have placed stringent limits on soot emissions. In order to allow design engineers to achieve the goal of reduced soot emissions, they must have the tools to so. Due to the complex nature of soot formation, which includes growth and oxidation, detailed numerical models are required to gain fundamental insights into the mechanisms of soot formation. A detailed description of the CoFlame FORTRAN code which models sooting laminar coflow diffusion flames is given. The code solves axial and radial velocity, temperature, species conservation, and soot aggregate and primary particle number density equations. The sectional particle dynamics model includes nucleation, PAH condensation and HACA surface growth, surface oxidation, coagulation, fragmentation, particle diffusion, and thermophoresis. The code utilizes a distributed memory parallelization scheme with strip-domain decomposition. The public release of the CoFlame code, which has been refined in terms of coding structure, to the research community accompanies this paper. CoFlame is validated against experimental data for reattachment length in an axi-symmetric pipe with a sudden expansion, and ethylene–air and methane–air diffusion flames for multiple soot morphological parameters and gas-phase species. Finally, the parallel performance and computational costs of the code is investigated. Program summary Program title: CoFlame Catalogue identifier: AFAU_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AFAU_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 94964 No. of bytes in distributed program, including test data, etc.: 6242986 Distribution format: tar.gz Programming language: Fortran 90, MPI. (Requires an Intel compiler). Computer: Workstations. Operating system: Linux. RAM: From 16 GB to over 1000 GB depending on size of system being simulated Classification: 22. Nature of problem: Soot formation in laminar diffusion flames with detailed description of thermodynamics, kinetic, and transport data Solution method: Finite volume method utilizing the pseudo-transient SIMPLE algorithm and locally coupled chemistry solver Additional comments: The code was specifically developed for modeling soot formation in laminar diffusion flames Running time: From hours to a month depending on the complexity of the chemical mechanism and the disparity between the initial guess and the final solution.

[1]  Stephen E. Stein,et al.  Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene , 1985 .

[2]  William H. Green,et al.  Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame , 2005 .

[3]  H. Bockhorn,et al.  Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons , 2000 .

[4]  M. Thomson,et al.  Modeling of Oxidation-Driven Soot Aggregate Fragmentation in a Laminar Coflow Diffusion Flame , 2010 .

[5]  Qingan Zhang Detailed Modeling of Soot Formation/Oxidation in Laminar Coflow Diffusion Flames , 2010 .

[6]  Heinz Pitsch,et al.  Hybrid Method of Moments for modeling soot formation and growth , 2009 .

[7]  M. Frenklach,et al.  Detailed modeling of soot particle nucleation and growth , 1991 .

[8]  Andrea D’Anna,et al.  Combustion-formed nanoparticles , 2009 .

[9]  Robert J. Santoro,et al.  Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame , 1993 .

[10]  Christopher R. Shaddix,et al.  Measurement of the dimensionless extinction coefficient of soot within laminar diffusion flames , 2007 .

[11]  A. Violi,et al.  Insights on the nanoparticle formation process in counterflow diffusion flames , 2007 .

[12]  Murray J. Thomson,et al.  Experimental investigation and detailed modeling of soot aggregate formation and size distribution in laminar coflow diffusion flames of Jet A-1, a synthetic kerosene, and n-decane , 2014 .

[13]  R. Koch,et al.  Measurements of the growth and coagulation of soot particles in a high-pressure shock tube , 2000 .

[14]  Seth B. Dworkin,et al.  A soot particle surface reactivity model applied to a wide range of laminar ethylene/air flames , 2014 .

[15]  M. Thomson,et al.  Modeling DME Addition Effects to Fuel on PAH and Soot in Laminar Coflow Ethylene/Air Diffusion Flames Using Two PAH Mechanisms , 2012 .

[16]  M. Thomson,et al.  Detailed numerical modeling of PAH formation and growth in non-premixed ethylene and ethane flames , 2012 .

[17]  M. Thomson,et al.  Soot formation with C1 and C2 fuels using an improved chemical mechanism for PAH growth , 2014 .

[18]  S. Stein,et al.  A new path to benzene in flames , 1991 .

[19]  D. E. Rosner,et al.  Soot volume fraction and temperature measurements in laminar nonpremixed flames using thermocouples , 1997 .

[20]  M. Aigner,et al.  Soot predictions in premixed and non-premixed laminar flames using a sectional approach for PAHs and soot , 2012 .

[21]  A. Raj,et al.  A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames , 2013 .

[22]  Mun Young Choi,et al.  MEASUREMENT OF FRACTAL PROPERTIES OF SOOT AGGLOMERATES IN LAMINAR COFLOW DIFFUSION FLAMES USING THERMOPHORETIC SAMPLING IN CONJUNCTION WITH TRANSMISSION ELECTRON MICROSCOPY AND IMAGE PROCESSING , 2001 .

[23]  Robert J. Santoro,et al.  Modeling and measurements of soot and species in a laminar diffusion flame , 1996 .

[24]  Andrew Pollard,et al.  The TN Quadrature Set for the Discrete Ordinates Method , 1995 .

[25]  Clinton P. T. Groth,et al.  A computational framework for predicting laminar reactive flows with soot formation , 2010 .

[26]  Ö. Gülder,et al.  Band Lumping Strategy for Radiation Heat Transfer Calculations Using a Narrowband Model , 2000 .

[27]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[28]  Robert J. Santoro,et al.  Soot particle measurements in diffusion flames , 1983 .

[29]  S. Rogak,et al.  AN IMPROVED MOVING SECTIONAL AEROSOL MODEL OF SOOT FORMATION IN A PLUG FLOW REACTOR , 2006 .

[30]  Steven N. Rogak,et al.  A novel fixed-sectional model for the formation and growth of aerosol agglomerates , 2004 .

[31]  A. Amer,et al.  A reaction mechanism for gasoline surrogate fuels for large polycyclic aromatic hydrocarbons , 2012 .

[32]  Steven N. Rogak,et al.  Detailed Kinetic Modeling of Carbonaceous Nanoparticle Inception and Surface Growth during the Pyrolysis of C6H6 behind Shock Waves , 2006 .

[33]  M. B. Long,et al.  Distributed-memory parallel computation of a forced, time-dependent, sooting, ethylene/air coflow diffusion flame , 2009 .

[34]  M. Thomson,et al.  A numerical study of soot aggregate formation in a laminar coflow diffusion flame , 2009 .

[35]  M. Thomson,et al.  Modeling of soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame with detailed PAH chemistry and an advanced sectional aerosol dynamics model , 2009 .

[36]  F. Xu,et al.  Soot surface oxidation in hydrocarbon/air diffusion flames at atmospheric pressure , 2003 .

[37]  Nick A. Eaves,et al.  A numerical study of high pressure, laminar, sooting, ethane–air coflow diffusion flames , 2012 .

[38]  M. Fairweather,et al.  Predictions of soot formation in turbulent, non-premixed propane flames , 1992 .

[39]  Ian M. Kennedy,et al.  Models of soot formation and oxidation , 1997 .

[40]  Robert B. Ross,et al.  Using MPI-2: Advanced Features of the Message Passing Interface , 2003, CLUSTER.

[41]  J. Robert,et al.  CHEMKIN-II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics , 1989 .

[42]  A. Khosousi,et al.  Detailed modelling of soot oxidation by O2 and OH in laminar diffusion flames , 2015 .

[43]  John Kent,et al.  Modeling Formation and Oxidation of Soot in Nonpremixed Flames , 2013 .

[44]  Markus Kraft,et al.  Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame , 2003 .

[45]  R. Viskanta,et al.  Prediction of spectral radiative transfer in a condensed cylindrical medium using discrete ordinates method , 1997 .

[46]  M. Thomson,et al.  A numerical and experimental study of soot formation in a laminar coflow diffusion flame of a Jet A-1 surrogate , 2013 .

[47]  Adel F. Sarofim,et al.  Effect of oxidation on the physical structure of soot , 1985 .

[48]  Klaus-Heinrich Homann,et al.  Fullerenes and Soot Formation- New Pathways to Large Particles in Flames. , 1998, Angewandte Chemie.

[49]  Fouad Ammouri,et al.  Soot formation effects of oxygen concentration in the oxidizer stream of laminar coannular nonpremixed methane/air flames , 2000 .

[50]  Robert J. Santoro,et al.  The Transport and Growth of Soot Particles in Laminar Diffusion Flames , 1987 .

[51]  G. Wang,et al.  Note on the Correction for Diffusion and Drag in the Slip Regime , 2000 .

[52]  M. Smooke,et al.  The impact of detailed multicomponent transport and thermal diffusion effects on soot formation in ethylene/air flames , 2009 .

[53]  Chia-Jung Hsu Numerical Heat Transfer and Fluid Flow , 1981 .

[54]  Mitchell D. Smooke,et al.  Computational and experimental study of soot formation in a coflow, laminar diffusion flame , 1999 .

[56]  Hongsheng Guo,et al.  Effects of radiation model on the modeling of a laminar coflow methane/air diffusion flame , 2004 .

[57]  K. Naumann COSIMA—a computer program simulating the dynamics of fractal aerosols , 2003 .

[58]  A. C. Barone,et al.  Surface deposition and coagulation efficiency of combustion generated nanoparticles in the size range from 1 to 10 nm , 2005 .

[59]  Seth B. Dworkin,et al.  The importance of reversibility in modeling soot nucleation and condensation processes , 2015 .

[60]  Stephen J. Harris,et al.  The role of fragmentation in defining the signature size distribution of diesel soot , 2002 .

[61]  Nadezhda A. Slavinskaya,et al.  A modelling study of aromatic soot precursors formation in laminar methane and ethene flames , 2009 .

[62]  Michael Frenklach,et al.  Reaction mechanism of soot formation in flames , 2002 .

[63]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[64]  M. Thomson,et al.  Numerical investigation of soot formation mechanisms in partially-premixed ethylene–air co-flow flames , 2012 .

[65]  Marco J. Castaldi,et al.  Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Laminar Premixed n-Butane Flame , 1998 .

[66]  D. E. Rosner,et al.  Effective diameters for collisions of fractal-like aggregates: recommendations for improved aerosol coagulation frequency predictions. , 2002, Journal of colloid and interface science.

[67]  Ö. Gülder,et al.  Non-grey gas radiative transfer analyses using the statistical narrow-band model☆ , 1998 .

[68]  M. Thomson,et al.  Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame , 2011 .

[69]  M. Kraft,et al.  A stochastic approach to calculate the particle size distribution function of soot particles in laminar premixed flames , 2003 .

[70]  M. Colvin,et al.  Reaction mechanisms in aromatic hydrocarbon formation involving the C5H5 cyclopentadienyl moiety , 1996 .

[71]  M. Megaridis Constantine,et al.  Comparison of Soot Growth and Oxidation in Smoking and Non–Smoking Ethylene Diffusion Flames , 1989 .

[72]  James A. Miller,et al.  Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels , 1992 .

[73]  D. E. Rosner,et al.  Simultaneous measurements of soot volume fraction and particle size/ Microstructure in flames using a thermophoretic sampling technique , 1997 .

[74]  S. Rogak,et al.  An aerosol model to predict size and structure of soot particles , 2004 .

[75]  Enzo O. Macagno,et al.  Computational and experimental study of a captive annular eddy , 1967, Journal of Fluid Mechanics.

[76]  D. E. Rosner,et al.  Thermophoretic Effects on Particles in Counterflow Laminar Diffusion Flames , 1993 .

[77]  Hai Wang Formation of nascent soot and other condensed-phase materials in flames , 2011 .

[78]  Fengshan Liu,et al.  Numerical Solutions of Three-Dimensional Non-Grey Gas Radiative Transfer Using the Statistical , 1999 .

[79]  S. Iyer,et al.  Determination of soot scattering coefficient from extinction and three-angle scattering in a laminar diffusion flame , 2007 .

[80]  Constantine M. Megaridis,et al.  Soot aerosol dynamics in a laminar ethylene diffusion flame , 1989 .

[81]  R. Flagan,et al.  Coagulation of aerosol agglomerates in the transition regime , 1992 .

[82]  Robert J. Kee,et al.  A FORTRAN COMPUTER CODE PACKAGE FOR THE EVALUATION OF GAS-PHASE, MULTICOMPONENT TRANSPORT PROPERTIES , 1986 .

[83]  G. Smallwood,et al.  Implementation of an advanced fixed sectional aerosol dynamics model with soot aggregate formation in a laminar methane/air coflow diffusion flame , 2008 .

[84]  Steven N. Rogak,et al.  Study of soot growth in a plug flow reactor using a moving sectional model , 2005 .