Combining chronicle mining and semantics for predictive maintenance in manufacturing processes

Within manufacturing processes, faults and failures may cause severe economic loss. With the vision of Industry 4.0, artificial intelligence techniques such as data mining play a crucial role in automatic fault and failure prediction. However, data mining especially pattern mining results normally lack both machine and human understandable representation and interpretation of knowledge, bringing obstacles to novice users to interpret the prediction results. To tackle this issue, in this paper we introduce a novel hybrid approach to facilitate predictive maintenance tasks in manufacturing processes. The proposed approach is a combination of data mining and semantics, within which chronicle mining is used to predict the future failures of the monitored industrial machinery, and a Manufacturing Predictive Maintenance Ontology (MPMO) with its rule-based extension is used to predict temporal constraints of failures and to represent the predictive results formally. As a result, Semantic Web Rule Language (SWRL) rules are constructed for predicting occurrence time of machinery failures in the future. The proposed rules provide explicit knowledge representation and semantic enrichment of failure prediction results, thus easing the understanding of the inferred knowledge. A case study on a semi-conductor manufacturing process is used to demonstrate our approach in detail.

[1]  Amor Lazzez,et al.  Sequential Mining: Patterns and Algorithms Analysis , 2013, ArXiv.

[2]  Jenny A. Harding,et al.  A Manufacturing Core Concepts Ontology for Product Lifecycle Interoperability , 2011, IWEI.

[3]  Frank van Harmelen,et al.  Stream reasoning: A survey and outlook , 2017, Data Sci..

[4]  Hao Wang,et al.  Semantic data mining: A survey of ontology-based approaches , 2015, Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015).

[5]  Alain Mille,et al.  A complete chronicle discovery approach: application to activity analysis , 2012, Expert Syst. J. Knowl. Eng..

[6]  Michael Gruninger Ontology of the Process Specification Language , 2004 .

[7]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[8]  Farhad Ameri,et al.  Semantic rule modelling for intelligent supplier discovery , 2014, Int. J. Comput. Integr. Manuf..

[9]  Farhad Ameri,et al.  An Upper Ontology for Manufacturing Service Description , 2006 .

[10]  Ahmed Samet,et al.  Frequent Chronicle Mining: Application on Predictive Maintenance , 2018, 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA).

[11]  Saso Dzeroski,et al.  Ontology of core data mining entities , 2014, Data Mining and Knowledge Discovery.

[12]  Christophe Dousson,et al.  Discovering Chronicles with Numerical Time Constraints from Alarm Logs for Monitoring Dynamic Systems , 1999, IJCAI.

[13]  Asunción Gómez-Pérez,et al.  OOPS! (OntOlogy Pitfall Scanner!): An On-line Tool for Ontology Evaluation , 2014, Int. J. Semantic Web Inf. Syst..

[14]  Jian Pei,et al.  Mining sequential patterns with constraints in large databases , 2002, CIKM '02.

[15]  Carl E. Landwehr,et al.  Basic concepts and taxonomy of dependable and secure computing , 2004, IEEE Transactions on Dependable and Secure Computing.

[16]  George Chryssolouris,et al.  On a Predictive Maintenance Platform for Production Systems , 2012 .

[17]  Leo Obrst,et al.  Ontologies for semantically interoperable systems , 2003, CIKM '03.

[18]  Felix Naumann,et al.  Data fusion , 2009, CSUR.

[19]  R. Keith Mobley,et al.  An introduction to predictive maintenance , 1989 .

[20]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[21]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[22]  Heiko Paulheim,et al.  Semantic Web in data mining and knowledge discovery: A comprehensive survey , 2016, J. Web Semant..

[23]  Lin Ma,et al.  Prognostic modelling options for remaining useful life estimation by industry , 2011 .

[24]  Michele Dassisti,et al.  ONTO-PDM: Product-driven ONTOlogy for Product Data Management interoperability within manufacturing process environment , 2012, Adv. Eng. Informatics.

[25]  Antoine Grall,et al.  Continuous-time predictive-maintenance scheduling for a deteriorating system , 2002, IEEE Trans. Reliab..

[26]  Simon Cox,et al.  Time Ontology in OWL , 2017 .

[27]  Paul Doran,et al.  Ontology reuse via ontology modularisation , 2006 .

[28]  Verónica Bolón-Canedo,et al.  Data discretization: taxonomy and big data challenge , 2016, WIREs Data Mining Knowl. Discov..

[29]  Ahmed Samet,et al.  On mining frequent chronicles for machine failure prediction , 2020, J. Intell. Manuf..

[30]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[31]  H. Lan,et al.  SWRL : A semantic Web rule language combining OWL and ruleML , 2004 .

[32]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[33]  Tetsuya Iizuka,et al.  Mining sequential patterns including time intervals , 2000, SPIE Defense + Commercial Sensing.

[34]  Robert I. M. Young,et al.  Towards a formal manufacturing reference ontology , 2013 .

[35]  Cecilia Zanni-Merk,et al.  An Ontology-based Approach for Failure Classification in Predictive Maintenance Using Fuzzy C-means and SWRL Rules , 2019, KES.

[36]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[37]  Csongor Nyulas,et al.  The SWRLAPI: A Development Environment for Working with SWRL Rules , 2008, OWLED.

[38]  Hayato Yamana,et al.  Generalized Sequential Pattern Mining with Item Intervals , 2006, J. Comput..

[39]  Eeva Järvenpää,et al.  The development of an ontology for describing the capabilities of manufacturing resources , 2018, J. Intell. Manuf..

[40]  Deborah L. McGuinness,et al.  OWL Web ontology language overview , 2004 .

[41]  Milton Borsato,et al.  An ontology-based model for prognostics and health management of machines , 2017, J. Ind. Inf. Integr..

[42]  Saïd Rechak,et al.  On the extraction of rules in the identification of bearing defects in rotating machinery using decision tree , 2010, Expert Syst. Appl..

[43]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .

[44]  Mario Cannataro,et al.  A Data Mining Ontology for Grid Programming , 2003 .

[45]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[46]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[47]  Michael Grüninger,et al.  Ontology of the Process Specification Language , 2004, Handbook on Ontologies.

[48]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[49]  Birgit Vogel-Heuser,et al.  Guest Editorial Industry 4.0-Prerequisites and Visions , 2016, IEEE Trans Autom. Sci. Eng..

[50]  Yun Sing Koh,et al.  A Survey of Sequential Pattern Mining , 2017 .

[51]  Henrik Eriksson,et al.  The evolution of Protégé: an environment for knowledge-based systems development , 2003, Int. J. Hum. Comput. Stud..

[52]  Ross D King,et al.  An ontology of scientific experiments , 2006, Journal of The Royal Society Interface.

[53]  Alessandro Saffiotti,et al.  An introduction to the anchoring problem , 2003, Robotics Auton. Syst..

[54]  BechhoferSean,et al.  The OWL API: A Java API for OWL ontologies , 2011 .

[55]  A. Siadat,et al.  MASON: A Proposal For An Ontology Of Manufacturing Domain , 2006, IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS'06).

[56]  Alain Bernard,et al.  Ontology-Based Framework Enabling Smart Product-Service Systems: Application of Sensing Systems for Machine Health Monitoring , 2018, IEEE Internet of Things Journal.

[57]  R. Keith Mobley Predictive Maintenance Techniques , 2002 .

[58]  Xifeng Yan,et al.  CloSpan: Mining Closed Sequential Patterns in Large Datasets , 2003, SDM.

[59]  Sean Bechhofer,et al.  The OWL API: A Java API for OWL ontologies , 2011, Semantic Web.

[60]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[61]  François de Bertrand de Beuvron,et al.  Smart Condition Monitoring for Industry 4.0 Manufacturing Processes: An Ontology-Based Approach , 2019, Cybern. Syst..