Metastable Speeds in the Fractional Allen-Cahn Equation

We study numerically the one-dimensional Allen-Cahn equation with the spectral fractional Laplacian $(-\Delta)^{\alpha/2}$ on intervals with homogeneous Neumann boundary conditions. In particular, we are interested in the speed of sharp interfaces approaching and annihilating each other. This process is known to be exponentially slow in the case of the classical Laplacian. Here we investigate how the width and speed of the interfaces change if we vary the exponent $\alpha$ of the fractional Laplacian. For the associated model on the real-line we derive asymptotic formulas for the interface speed and time-to-collision in terms of $\alpha$ and a scaling parameter $\varepsilon$. We use a numerical approach via a finite-element method based upon extending the fractional Laplacian to a cylinder in the upper-half plane, and compute the interface speed, time-to-collapse and interface width for $\alpha\in(0.2,2]$. A comparison shows that the asymptotic formulas for the interface speed and time-to-collision give a good approximation for large intervals.

[1]  Long-time behavior for crystal dislocation dynamics , 2016, 1609.04441.

[2]  P. R. Stinga,et al.  Extension Problem and Harnack's Inequality for Some Fractional Operators , 2009, 0910.2569.

[3]  Fawang Liu,et al.  A Crank-Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation , 2014, SIAM J. Numer. Anal..

[4]  Seunggyu Lee,et al.  The fractional Allen-Cahn equation with the sextic potential , 2019, Appl. Math. Comput..

[5]  K. Burrage,et al.  Fourier spectral methods for fractional-in-space reaction-diffusion equations , 2014 .

[6]  Ricardo H. Nochetto,et al.  A PDE Approach to Space-Time Fractional Parabolic Problems , 2014, SIAM J. Numer. Anal..

[7]  F. Achleitner,et al.  Analysis and numerics of traveling waves for asymmetric fractional reaction-diffusion equations , 2014, 1405.5779.

[8]  C. Kuehn Multiple Time Scale Dynamics , 2015 .

[9]  Hong Wang,et al.  A fast Galerkin finite element method for a space-time fractional Allen-Cahn equation , 2020, J. Comput. Appl. Math..

[10]  Zhifeng Weng,et al.  Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen–Cahn model ☆ , 2016 .

[11]  Xinfu Chen,et al.  Generation, propagation, and annihilation of metastable patterns , 2004 .

[12]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[13]  Xavier Ros-Oton,et al.  Nonlocal problems with Neumann boundary conditions , 2014, 1407.3313.

[14]  Guofei Pang,et al.  What is the fractional Laplacian? A comparative review with new results , 2020, J. Comput. Phys..

[15]  F. Achleitner,et al.  Traveling waves for a bistable equation with nonlocal diffusion , 2013, Advances in Differential Equations.

[16]  Gerd Grubb,et al.  Regularity of spectral fractional Dirichlet and Neumann problems , 2014, 1412.3744.

[17]  Crystal Dislocations with Different Orientations and Collisions , 2014, 1407.0620.

[18]  Ricardo H. Nochetto,et al.  Tensor FEM for Spectral Fractional Diffusion , 2017, Foundations of Computational Mathematics.

[19]  K. Pan,et al.  A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen-Cahn equation , 2020 .

[20]  Zhi-Cheng Wang,et al.  Global asymptotic stability of traveling waves to the Allen-Cahn equation with a fractional Laplacian , 2019, Communications on Pure & Applied Analysis.

[21]  J. Melenk,et al.  hp-FEM for the fractional heat equation , 2019, IMA Journal of Numerical Analysis.

[22]  E. Valdinoci,et al.  Relaxation times for atom dislocations in crystals , 2015, 1504.00044.

[23]  Strongly Nonlocal Dislocation Dynamics in Crystals , 2013, 1311.3549.

[24]  R. Servadei,et al.  On the spectrum of two different fractional operators , 2014, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[25]  Nicholas Hale,et al.  An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations , 2012, SIAM J. Sci. Comput..

[26]  M. Kwasnicki,et al.  Ten equivalent definitions of the fractional laplace operator , 2015, 1507.07356.

[27]  M. Stoll,et al.  Symmetric Interior Penalty Galerkin Method For Fractional-In-Space Allen-Cahn Equations , 2015 .

[28]  Qianqian Yang,et al.  A preconditioned numerical solver for stiff nonlinear reaction-diffusion equations with fractional Laplacians that avoids dense matrices , 2015, J. Comput. Phys..

[29]  J. Carr,et al.  Metastable patterns in solutions of ut = ϵ2uxx − f(u) , 1989 .

[30]  G. Karniadakis,et al.  A fractional phase-field model for two-phase flows with tunable sharpness: Algorithms and simulations , 2016 .

[31]  Tao Tang,et al.  Numerical Analysis of Fully Discretized Crank–Nicolson Scheme for Fractional-in-Space Allen–Cahn Equations , 2016, J. Sci. Comput..

[32]  Yannick Sire,et al.  Nonlinear equations for fractional laplacians II: existence, uniqueness, and qualitative properties of solutions , 2011, 1111.0796.

[33]  E. Valdinoci,et al.  Dislocation Dynamics in Crystals: A Macroscopic Theory in a Fractional Laplace Setting , 2013 .

[34]  Alexander A. Nepomnyashchy,et al.  Front-type solutions of fractional Allen–Cahn equation , 2008 .

[35]  S. S. Alzahrani,et al.  Fourier spectral exponential time differencing methods for multi-dimensional space-fractional reaction-diffusion equations , 2019, J. Comput. Appl. Math..

[36]  Maria del Mar Gonzalez,et al.  Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one , 2010, 1007.0740.